曲線y=x3-6x2-x+6的斜率最小的切線方程為   
【答案】分析:根據(jù)導(dǎo)數(shù)的幾何意義可知在某點(diǎn)處的導(dǎo)數(shù)為切線的斜率,先求出導(dǎo)函數(shù)f'(x),利用配方法求出導(dǎo)函數(shù)的最小值即為切線最小斜率,再用點(diǎn)斜式寫出化簡(jiǎn).
解答:解:y′=3x2-12x-1=3(x-2)2-13,
∴x=2時(shí),
切線最小斜率為-13,此時(shí),y=(2)3-6×(2)2-2+6=-12.
∴切線方程為y+12=-13(x-2),即13x+y-14=0.
故答案為:13x+y-14=0.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及二次函數(shù)的最值等基礎(chǔ)題知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、已知曲線y=x3-6x2+11x-6.在它對(duì)應(yīng)于x∈[0,2]的弧段上求一點(diǎn)P,使得曲線在該點(diǎn)的切線在y軸上的截距為最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-6x2-x+6的斜率最小的切線方程為
13x+y-14=0
13x+y-14=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線y=x3-6x2+11x-6.在它對(duì)應(yīng)于x∈[0,2]的弧段上求一點(diǎn)P,使得曲線在該點(diǎn)的切線在y軸上的截距為最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線y=x3-6x2+11x-6.在它對(duì)應(yīng)于x∈[0,2]的弧段上求一點(diǎn)P,使得曲線在該點(diǎn)的切線在y軸上的截距為最小,并求出這個(gè)最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案