已知二項分布滿足X~B(3,),則(X=2)=   ▲   .(用分?jǐn)?shù)表示)
解:因為X~B(3,)則說明了
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,甲產(chǎn)品的一等品率為,二等品率為;乙產(chǎn)品的一等品率為,二等品率為.生產(chǎn)件甲產(chǎn)品,若是一等品,則獲利萬元,若是二等品,則虧損萬元;生產(chǎn)件乙產(chǎn)品,若是一等品,則獲利萬元,若是二等品,則虧損
元.兩種產(chǎn)品生產(chǎn)的質(zhì)量相互獨立.
(Ⅰ)設(shè)生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品可獲得的總利潤為(單位:萬元),求的分布列;
(Ⅱ)求生產(chǎn)件甲產(chǎn)品所獲得的利潤不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,質(zhì)點P在正方形ABCD的四個頂點上按逆時針方向前進.現(xiàn)在投擲一個質(zhì)地均勻、每個面上標(biāo)有一個數(shù)字的正方體玩具,它的六個面上分別寫有兩個1、兩個2、兩個3一共六個數(shù)字.質(zhì)點P從A點出發(fā),規(guī)則如下:當(dāng)正方體上底面出現(xiàn)的數(shù)字是1,質(zhì)點P前進一步(如由A到B);當(dāng)正方體上底面出現(xiàn)的數(shù)字是2,質(zhì)點P前進兩步(如由A到C),當(dāng)正方體上底面出現(xiàn)的數(shù)字是3,質(zhì)點P前進三步(如由A到D).在質(zhì)點P轉(zhuǎn)一圈之前連續(xù)投擲,若超過一圈,則投擲終止.
(1)求質(zhì)點P恰好返回到A點的概率;
(2)在質(zhì)點P轉(zhuǎn)一圈恰能返回到A點的所有結(jié)果中,用隨機變量ξ表示點P恰能返回到A點的投擲次數(shù),求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一個小球從M處投入,通過管道自上而下落ABC。已知小球從每個叉口落入左右兩個 管道的可能性是相等的.某商家按上述投球方式進行促銷活動,若投入的小球落到A,B,C,則分別設(shè)為l,

2,3等獎.(I)已知獲得l,2,3等獎的折扣率分別為50%,70%,90%.記隨變量為獲得k(k=1,2,3)等獎的折扣率,求隨機變量的分布列及期望;(II)若有3人次(投入l球為l人次)參加促銷活動,記隨機變量為獲得1等獎或2等獎的人次,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司向市場投放三種新型產(chǎn)品,經(jīng)調(diào)查發(fā)現(xiàn)第一種產(chǎn)品受歡迎的概率為,第二、第三種
產(chǎn)品受歡迎的概率分別為,且不同種產(chǎn)品是否受歡迎相互獨立.記為公司向市場投放三種新型產(chǎn)品受歡迎的數(shù)量,其分布列為

(Ⅰ)求該公司至少有一種產(chǎn)品受歡迎的概率;
(Ⅱ)求的值;
(Ⅲ)求數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1,L2兩條路線(如圖),L1路線上有A1,A2,A3三個路口,各路口遇到紅燈的概率均為L2路線上有B1,B2兩個路口,各路口遇到紅燈的概率依次為,
(Ⅰ)若走L1路線,求最多遇到1次紅燈的概率;
(Ⅱ)若走L2路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請你
幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為把中國武漢大學(xué)辦成開放式大學(xué),今年櫻花節(jié)武漢大學(xué)在其屬下的藝術(shù)學(xué)院和文學(xué)院分別招募8名和12名志愿者從事兼職導(dǎo)游工作,將這20志愿者的身高編成如下莖葉圖(單位:厘米)若身高在175cm及其以上定義為“高個子”,否則定義為“非高個子”且只有文學(xué)院的“高個子”才能擔(dān)任兼職導(dǎo)游。
(1)根據(jù)志愿者的身高莖葉圖指出文學(xué)院志愿者身高的中位數(shù)
(2)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少
(3)若從所有“高個子”中選3名志愿者。用表示所選志愿者中能擔(dān)任“兼職導(dǎo)游”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商場“五一”期間舉行有獎促銷活動,顧客只要在商店購物滿800元就能得到一次摸獎機會.摸獎規(guī)則是:在盒子內(nèi)預(yù)先放有5個大小相同的球,其中一個球標(biāo)號是0,兩個球標(biāo)號都是40,還有兩個球沒有標(biāo)號。顧客依次從盒子里摸球,每次摸一個球(不放回),若累計摸到兩個沒有標(biāo)號的球就停止摸球,否則將盒子內(nèi)球摸完才停止.獎金數(shù)為摸出球的標(biāo)號之和(單位:元),已知某顧客得到一次摸獎機會。
(1)求該顧客摸三次球被停止的概率;
(2)設(shè)為該顧客摸球停止時所得的獎金數(shù),求的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 甲、乙兩位籃球運動員進行定點投藍(lán),每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(1)求甲至多命中2個且乙至少命中2個的概率;
(2)若規(guī)定每投籃一次命中得3分,未命中得分,求乙所得分?jǐn)?shù)的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案