已知雙曲線C:-=1(a>0,b>0)的一條漸近線的方程為y=2x,則雙曲線C的離心率為    
【答案】分析:先根據(jù)雙曲線的標(biāo)準(zhǔn)方程求得漸近線方程,根據(jù)其中一條的方程求得a和b的關(guān)系,進(jìn)而求得a和c的關(guān)系,則離心率可得.
解答:解:∵雙曲線的漸進(jìn)線方程為y=±,一條漸近線的方程為y=2x,
=2,設(shè)a=t,b=2t
則c==t
∴離心率e==
故答案為:
點評:本題主要考查了雙曲線的簡單性質(zhì).解題的關(guān)鍵是熟練掌握雙曲線方程中的a,b和c基本關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:-=1(0<<1)的右焦點為B,過點B作直線交雙曲線C的右支于M、N兩點,試確定的范圍,使·=0,其中點O為坐標(biāo)原點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (2012年高考湖南卷理科5)已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為

A.-=1  B.-=1  C.-=1    D.-=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西南寧二中高三(下)5月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線C:=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為x=
(I)求雙曲線C的方程;
(Ⅱ)設(shè)直線l是圓O:x2+y2=2上動點P(x,y)(xy≠0)處的切線,l與雙曲線C交于不同的兩點A,B,證明∠AOB的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南邵陽石齊學(xué)校高二第三次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

 已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為(   )

A. -=1  B. -=1  C. -=1    D. -=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖南卷解析版) 題型:選擇題

已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為

A、-=1  B、-=1  C、-=1    D、-=1[w~#

 

查看答案和解析>>

同步練習(xí)冊答案