17.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn+1=2Sn+n+1(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)利用遞推關(guān)系可得:an+1=2an+1,變形為:an+1+1=2(an+1),利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用“裂項(xiàng)求和”方法即可得出.

解答 解:(1)∵Sn+1=2Sn+n+1(n∈N*),
∴當(dāng)n≥2時(shí),Sn=2Sn-1+n,
∴an+1=2an+1,
變形為:an+1+1=2(an+1),
∴數(shù)列{an+1}是等比數(shù)列,公比為2,首項(xiàng)為2.
∴an+1=2n,
∴an=2n-1.
(2)bn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=$1-\frac{1}{{2}^{2}-1}$+$\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1}$+…+$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$
=1-$\frac{1}{{2}^{n+1}-1}$.

點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”方法、數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求下列函數(shù)的定義域
(1)f(x)=$\sqrt{2x+1}$+$\sqrt{3-4x}$;
(2)y=$\frac{\sqrt{1-x}}{{x}^{2}-2x-3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知點(diǎn)P為橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上的動(dòng)點(diǎn),EF為圓N:x2+(y-1)2=1的任一直徑,求$\overrightarrow{PE}•\overrightarrow{PF}$最大值和最小值是( 。
A.16,12-4$\sqrt{3}$B.17,13-4$\sqrt{3}$C.19,12-4$\sqrt{3}$D.20,13-4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列命題正確的是( 。
A.若非零向量$\overrightarrow{a}$與$\overrightarrow$的方向相同或相反,則$\overrightarrow{a}$+$\overrightarrow$的方向必與$\overrightarrow{a}$,$\overrightarrow$之一方向相同
B.在△ABC中,必有$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$
C.若$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$,則A,B,C為一個(gè)三角形的三個(gè)頂點(diǎn)
D.若$\overrightarrow{a}$與$\overrightarrow$為非零向量,則|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$|+|$\overrightarrow$|一定相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直線$\sqrt{3}$x+3y+a=0的傾斜角為( 。
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)$y={log_{\frac{1}{2}}}({{x^2}+2x-3})$的單調(diào)遞增區(qū)間是( 。
A.(-∞,-3)B.(-∞,-1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.《張丘建算經(jīng)》是我國(guó)南北朝時(shí)期的一部重要數(shù)學(xué)著作,書(shū)中系統(tǒng)的介紹了等差數(shù)列,同類(lèi)結(jié)果在三百多年后的印度才首次出現(xiàn).書(shū)中有這樣一個(gè)問(wèn)題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個(gè)月(按30天計(jì)算)總共織布390尺,問(wèn)每天增加的數(shù)量為多少尺?該問(wèn)題的答案為( 。
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.點(diǎn)P在△ABC所在平面上,若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AB}$,且S△ABC=12,則△PAB的面積為( 。
A.4B.6C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,四邊形ABEF為矩形,四邊形CEFD為直角梯形,CE∥DF,EF⊥FD,平面ABEF⊥平面CEFD,P為AD的中點(diǎn),且AB=EC=$\frac{1}{2}$FD.
(1)求證:CD⊥平面ACF;
(2)若BE=2AB,求二面角B-FC-P的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案