【題目】紙張的規(guī)格是指紙張制成后,經(jīng)過修整切邊,裁成一定的尺寸.現(xiàn)在我國采用國際標(biāo)準(zhǔn),規(guī)定以、、、、、等標(biāo)記來表示紙張的幅面規(guī)格.復(fù)印紙幅面規(guī)格只采用系列和系列,其中系列的幅面規(guī)格為:①、、、、所有規(guī)格的紙張的幅寬(以表示)和長度(以表示)的比例關(guān)系都為;②將紙張沿長度方向?qū)﹂_成兩等分,便成為規(guī)格,紙張沿長度方向?qū)﹂_成兩等分,便成為規(guī)格,…,如此對(duì)開至規(guī)格.現(xiàn)有、、、、紙各一張.若紙的寬度為,則紙的面積為________;這張紙的面積之和等于________.
【答案】
【解析】
可設(shè)的紙張的長度為,則數(shù)列成以為公比的等比數(shù)列,設(shè)的紙張的面積,則數(shù)列成以為公比的等比數(shù)列,然后利用等比數(shù)列的通項(xiàng)公式求出數(shù)列的首項(xiàng),并利用等比數(shù)列的求和公式求出的前項(xiàng)之和.
可設(shè)的紙張的長度為,面積為,的寬度為,
的長度為,所以,數(shù)列是以為公比的等比數(shù)列,
由題意知紙的寬度為,,,
所以,紙的面積為,
又,,
所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,
因此,這張紙的面積之和等于.
故答案為:;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)A的直線交y軸正半軸于點(diǎn)B,且有,當(dāng)點(diǎn)A的縱坐標(biāo)為6時(shí),為正三角形.
(1)求C的方程;
(2)若直線,且和C有且只有一個(gè)公共點(diǎn)D,證明:直線AD過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)若,當(dāng)三棱錐的體積最大時(shí),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在上的單調(diào)區(qū)間;
(2)用表示中的最大值,為的導(dǎo)函數(shù),設(shè)函數(shù),若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(為常數(shù),且),直線與曲線交于兩點(diǎn).
(1)若,求實(shí)數(shù)的值;
(2)若點(diǎn)的直角坐標(biāo)為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線過C的左焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)節(jié)高三學(xué)生學(xué)習(xí)壓力,某校高三年級(jí)舉行了拔河比賽,在賽前三位老師對(duì)前三名進(jìn)行了預(yù)測(cè),于是有了以下對(duì)話:老師甲:“7班男生比較壯,7班肯定得第一名”.老師乙:“我覺得14班比15班強(qiáng),14班名次會(huì)比15班靠前”.老師丙:“我覺得7班能贏15班”.最后老師丁去觀看完了比賽,回來后說:“確實(shí)是這三個(gè)班得了前三名,且無并列,但是你們?nèi)酥兄挥幸蝗祟A(yù)測(cè)準(zhǔn)確”.那么,獲得一、二、三名的班級(jí)依次為( )
A.7班、14班、15班B.14班、7班、15班
C.14班、15班、7班D.15班、14班、7班
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,平面AA1B1B⊥平面ABC,AB=AA1=A1B=4,BC=2,AC=2,點(diǎn)F為AB的中點(diǎn),點(diǎn)E為線段A1C1上的動(dòng)點(diǎn).
(1)求證:BC⊥平面A1EF;
(2)若∠B1EC1=60°,求四面體A1B1EF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex﹣ax+a(a∈R),其圖象與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2.
(1)求a的取值范圍;
(2)證明:f′()<0(f′(x)為函數(shù)f(x)的導(dǎo)函數(shù));
(3)設(shè)點(diǎn)C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記t,求(a﹣1)(t﹣1)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com