精英家教網 > 高中數學 > 題目詳情

【題目】紙張的規(guī)格是指紙張制成后,經過修整切邊,裁成一定的尺寸.現在我國采用國際標準,規(guī)定以、、、、等標記來表示紙張的幅面規(guī)格.復印紙幅面規(guī)格只采用系列和系列,其中系列的幅面規(guī)格為:①、、、所有規(guī)格的紙張的幅寬(以表示)和長度(以表示)的比例關系都為;②將紙張沿長度方向對開成兩等分,便成為規(guī)格,紙張沿長度方向對開成兩等分,便成為規(guī)格,,如此對開至規(guī)格.現有、、、紙各一張.紙的寬度為,則紙的面積為________;這張紙的面積之和等于________.

【答案】

【解析】

可設的紙張的長度為,則數列成以為公比的等比數列,設的紙張的面積,則數列成以為公比的等比數列,然后利用等比數列的通項公式求出數列的首項,并利用等比數列的求和公式求出的前項之和.

可設的紙張的長度為,面積為的寬度為,

的長度為,所以,數列是以為公比的等比數列,

由題意知紙的寬度為,,

所以,紙的面積為,

,

所以,數列是以為首項,以為公比的等比數列,

因此,這張紙的面積之和等于.

故答案為:;.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為F,AC上異于原點的任意一點,過點A的直線交y軸正半軸于點B,且有,當點A的縱坐標為6時,為正三角形.

1)求C的方程;

2)若直線,且C有且只有一個公共點D,證明:直線AD過定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與重合),為線段的中點,現將正方形沿折起,使得平面平面.

1)證明:平面.

2)若,當三棱錐的體積最大時,求到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數上的單調區(qū)間;

2)用表示中的最大值,的導函數,設函數,若上恒成立,求實數的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為(其中為參數),以原點為極點,以軸為極軸建立極坐標系,曲線的極坐標方程為為常數,且),直線與曲線交于兩點.

1)若,求實數的值;

2)若點的直角坐標為,且,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】O為坐標原點,動點M在橢圓C上,過Mx軸的垂線,垂足為N,點P滿足.

1)求點P的軌跡方程;

2)設點在直線上,且.證明:過點P且垂直于OQ的直線C的左焦點F.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調節(jié)高三學生學習壓力,某校高三年級舉行了拔河比賽,在賽前三位老師對前三名進行了預測,于是有了以下對話:老師甲:“7班男生比較壯,7班肯定得第一名”.老師乙:“我覺得14班比15班強,14班名次會比15班靠前”.老師丙:“我覺得7班能贏15班”.最后老師丁去觀看完了比賽,回來后說:“確實是這三個班得了前三名,且無并列,但是你們三人中只有一人預測準確”.那么,獲得一、二、三名的班級依次為( )

A.7班、14班、15B.14班、7班、15

C.14班、15班、7D.15班、14班、7

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三棱柱ABCA1B1C1中,平面AA1B1B⊥平面ABC,ABAA1A1B4,BC2AC2,點FAB的中點,點E為線段A1C1上的動點.

1)求證:BC⊥平面A1EF;

2)若∠B1EC160°,求四面體A1B1EF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數fx)=exax+aaR),其圖象與x軸交于Ax10),Bx20)兩點,且x1x2

1)求a的取值范圍;

2)證明:f′()<0f′(x)為函數fx)的導函數);

3)設點C在函數yfx)的圖象上,且△ABC為等腰直角三角形,記t,求(a1)(t1)的值.

查看答案和解析>>

同步練習冊答案