【題目】設(shè)數(shù)集由實(shí)數(shù)構(gòu)成,且滿足:若),則.

(1)若,試證明中還有另外兩個(gè)元素;

(2)集合是否為雙元素集合,并說明理由;

(3)若中元素個(gè)數(shù)不超過8個(gè),所有元素的和為,且中有一個(gè)元素的平方等于所有元素的積,求集合.

【答案】(1) ,;(2)見解析;(3).

【解析】

(1)根據(jù)集合的互異性進(jìn)行求解,注意條件2∈A,把2代入進(jìn)行驗(yàn)證;
(2)可以假設(shè)A為單元素集合,求出其等價(jià)條件,從而進(jìn)行判斷;
(3)先求出集合A中元素的個(gè)數(shù),=1,求出x的值,從而求出集合A.

(1)證明:若x∈A,則

又∵2∈A,

∵-1∈A,∴
∴A中另外兩個(gè)元素為,

(2),,,且,,

,故集合中至少有3個(gè)元素,∴不是雙元素集合;

(3)由,,可得

,所有元素積為1,∴,

,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,截拋物線的準(zhǔn)線所得弦長為1.

1)求橢圓的方程;

2)如圖所示,,,是橢圓的頂點(diǎn),是橢圓上除頂點(diǎn)外的任意一點(diǎn),直線軸于點(diǎn),直線于點(diǎn),設(shè)的斜率為的斜率為.證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是偶函數(shù),.

(1)求的值,并判斷函數(shù)上的單調(diào)性,說明理由;

(2)設(shè),若函數(shù)的圖像有且僅有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍;

(3)定義在上的一個(gè)函數(shù),如果存在一個(gè)常數(shù),使得式子對(duì)一切大于1的自然數(shù)都成立,則稱函數(shù)為“上的函數(shù)”(其中,).試判斷函數(shù)是否為“上的函數(shù)”,若是,則求出的最小值;若不是,則說明理由.(注:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為F1F2,該橢圓與y軸正半軸交于點(diǎn)M,且△MF1F2是邊長為2的等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過點(diǎn)F2任作一直線交橢圓于AB兩點(diǎn),平面上有一動(dòng)點(diǎn)P,設(shè)直線PA,PF2,PB的斜率分別為k1,kk2,且滿足k1+k2=2k,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),求函數(shù)的最大值;

2)若函數(shù)存在唯一零點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園有三條觀光大道、圍成直角三角形,其中直角邊,斜邊.

1)若甲乙都以每分鐘100的速度從點(diǎn)出發(fā),甲沿運(yùn)動(dòng),乙沿運(yùn)動(dòng),乙比甲遲2分鐘出發(fā),求乙出發(fā)后的第1分鐘末甲乙之間的距離;

2)現(xiàn)有甲、乙、丙三位小朋友分別在點(diǎn)、、,設(shè),乙丙之間的距離是甲乙之間距離2倍,且,請(qǐng)將甲乙之間的距離表示為的函數(shù),并求甲乙之間的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了獲得更大的收益,每年要投入一定的資金用于廣告促銷,經(jīng)調(diào)查,每年投入廣告費(fèi)t百萬元,可增加銷售額約為百萬元.

Ⅰ)若該公司將一年的廣告費(fèi)控制在4百萬元之內(nèi),則應(yīng)投入多少廣告費(fèi),才能使該公司由此增加的收益最大?

Ⅱ)現(xiàn)該公司準(zhǔn)備共投入5百萬元,分別用于廣告促銷和技術(shù)改造,經(jīng)預(yù)測(cè),每投入技術(shù)改造費(fèi)百萬元,可增加的銷售額約為百萬元,請(qǐng)?jiān)O(shè)計(jì)一個(gè)資金分配方案,使該公司由此增加的收益最大.

(注:收益=銷售額-投入,這里除了廣告費(fèi)和技術(shù)改造費(fèi),不考慮其他的投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,是三個(gè)不同的平面,給出下列四個(gè)命題:(1)若,,則;(2)若,,,則;(3)若,,則;(4)若,,則,其中正確命題的序號(hào)是(

A.1)(2B.2)(3

C.3)(4D.1)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為,過點(diǎn)軸垂直的直線交橢圓兩點(diǎn), 的面積為,橢圓的離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案