設(shè)數(shù)列{an}是等差數(shù)列,a1<0,a7•a8<0.若數(shù)列{an}的前n項的和Sn取得最小值,則n的值為( )
A.4
B.7
C.8
D.15
【答案】分析:由已知得到首項和公差之間的關(guān)系,再結(jié)合a1<0分析出數(shù)列遞增,求出哪幾項為負值即可得到結(jié)論.
解答:解:∵a1<0,a7•a8<0.
∴d>0,a7<0,a8>0
∴數(shù)列{an}的前n項的和Sn取得最小值時,n=7
故選B
點評:本題主要考查等差數(shù)列的前n項和以及數(shù)列的函數(shù)特性.解決本題的關(guān)鍵是由a1<0分析出數(shù)列遞增.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)求數(shù)列{
anbn
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊一模)設(shè)數(shù)列{an}滿足a1=1,a2=2,對任意的n∈N*,an+2是an+1與an的等差中項.
(1)設(shè)bn=an+1-an,證明數(shù)列{bn}是等比數(shù)列,并求出其通項公式;
(2)寫出數(shù)列{an}的通項公式(不要求計算過程),令cn=
3
2
n(
5
3
-an)
,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市望子成龍學校高二(上)期中數(shù)學試卷(解析版) 題型:解答題

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)求數(shù)列{}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省臨沂市重點高中高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)求數(shù)列{}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市望子成龍學校高二(上)期中數(shù)學試卷(解析版) 題型:解答題

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)求數(shù)列{}的前n項和Sn

查看答案和解析>>

同步練習冊答案