已知直線過點且與拋物線交于A、B兩點,以弦AB為直徑的圓恒過坐標(biāo)原點O.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)是直線上任意一點,求證:直線QA、QM、QB的斜率依次成等差數(shù)列.
(1)(2)詳見解析.
解析試題分析:(1)設(shè)直線方程為,代入得
設(shè) ,,則有,而 ,
故
即,得,所以拋物線方程為;
(2)由是直線上任意一點,可設(shè) 由(1)知 , ,
∴= , ∵==,
==,
+=+=
= = == =,有等差中項的性質(zhì)可知直線QA、QP、QB的斜率依次成等差數(shù)列.
試題解析:(1)設(shè)直線方程為,代入得
設(shè) ,,則有 2分
而 ,
故
即,得,所以拋物線方程為 6分
說明:取過M 點的特殊位置的直線求得拋物線的方程給滿分.
(2)設(shè) 由(1)知 , ,
∴= , ∵==,
==, 9分
+=+=
=
= == =
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓M:=1(a>)的右焦點為F1,直線l:x=與x軸交于點A,若=2 (其中O為坐標(biāo)原點).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求·的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點為雙曲線的一個焦點,且兩條曲線都經(jīng)過點.
(1)求這兩條曲線的標(biāo)準(zhǔn)方程;
(2)已知點在拋物線上,且它與雙曲線的左,右焦點構(gòu)成的三角形的面積為4,求點 的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線(其中).
(1)若定點到雙曲線上的點的最近距離為,求的值;
(2)若過雙曲線的左焦點,作傾斜角為的直線交雙曲線于、兩點,其中,是雙曲線的右焦點.求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點A (p為常數(shù),p>0),B為x軸負(fù)半軸上的一個動點,動點M使得|AM|=|AB|,且線段BM的中點G在y軸上.
(1)求動點M的軌跡C的方程;
(2)設(shè)EF為曲線C的一條動弦(EF不垂直于x軸),其垂直平分線與x軸交于點T(4,0),當(dāng)p=2時,求|EF|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點為F2(1,0),點 在橢圓上.
(1)求橢圓方程;
(2)點在圓上,M在第一象限,過M作圓的切線交橢圓于P、Q兩點,問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線,其準(zhǔn)線方程為,過準(zhǔn)線與軸的交點做直線交拋物線于兩點.
(1)若點為中點,求直線的方程;
(2)設(shè)拋物線的焦點為,當(dāng)時,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com