用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺(tái)。
如圖,在四棱臺(tái)中,下底是邊長(zhǎng)為的正方形,上底是邊長(zhǎng)為1的正方形,側(cè)棱⊥平面,.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.
以D為原點(diǎn),以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標(biāo)系D—xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).
(Ⅰ)設(shè)由得到,進(jìn)一步得到平面;
(Ⅱ)二面角的余弦值為.
【解析】
試題分析:以D為原點(diǎn),以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標(biāo)系D—xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2). 3分
(Ⅰ)證明:設(shè)則有所以,,∴平面; 6分
(Ⅱ)解:
設(shè)為平面的法向量,
于是 8分
同理可以求得平面的一個(gè)法向量, 10分
∴二面角的余弦值為. 12分
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟。在空間垂直關(guān)系明確的情況下,通過建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用向量可簡(jiǎn)化證明過程。本題難度不大。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省高三第十一次大練習(xí)理科數(shù)學(xué)(解析版) 題型:解答題
用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺(tái).如圖,在四棱臺(tái)中,下底是邊長(zhǎng)為的正方形,上底是邊長(zhǎng)為1的正方形,側(cè)棱⊥平面,.
(Ⅰ)求證:平面;
(II)求平面與平面夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省西安市高新一中高三第十一次大練習(xí)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com