已知Ω={(x,y)||x|≤1,|y|≤1},A是曲線y=x2與y=x 
1
2
圍成的區(qū)域,若在區(qū)域Ω上隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域A的概率為
1
12
1
12
分析:求得兩曲線的交點(diǎn)分別為O(0,0)、A(1,1),可得區(qū)域A的面積等于函數(shù)y=x
1
2
-x2在[0,1]上的定積分值,利用積分計(jì)算公式算出區(qū)域A的面積S=
1
3
.區(qū)域Ω表示的是一個(gè)邊長(zhǎng)為2的正方形,因此求出此正方形的面積并利用幾何概型公式加以計(jì)算,即可得到所求概率.
解答:解:聯(lián)解y=x2與y=x 
1
2
,得
x=0
y=0
x=1
y=1

∴兩曲線的交點(diǎn)分別為O(0,0)、A(1,1).
因此,兩條曲線圍成的區(qū)域A的面積為
S=∫01x
1
2
-x2)dx=(
2
3
x
3
2
-
1
3
x3
|
1
0
=
2
3
-
1
3
=
1
3

而Ω={(x,y)||x≤1,|y|≤1},表示的區(qū)域是一個(gè)邊長(zhǎng)為2的正方形,
∴在Ω上隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域A中的概率P=
S陰影
S正方形
=
1
3
2×2
=
1
12
,
故答案為:
1
12
點(diǎn)評(píng):本題給出區(qū)域A和Ω,求在Ω上隨機(jī)投一點(diǎn)P,使點(diǎn)P落入?yún)^(qū)域A中的概率.著重考查了定積分計(jì)算公式、定積分的幾何意義和幾何概型計(jì)算公式等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},若集合A∩B≠φ,則實(shí)數(shù)a的取值范圍是(  )
A、[-1,3]
B、[-1-
2
2
]
C、[-3,1]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={(x,y)|
yx2
=1},B={(x,y)|x2-y=0},C={(0,0),(1,1),(-1,0)},則(A∪B)∩C
{(0,0),(1,1)}
{(0,0),(1,1)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)已知正實(shí)數(shù)x,y滿足等式x+y+8=xy,若對(duì)任意滿足條件的x,y,都有不等式(x+y)2-a(x+y)+1≥0恒成立,則實(shí)數(shù)a的取值范圍是
(-∞,
65
8
]
(-∞,
65
8
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)x,y滿足
1
x
+
2
y
=1
,則x+2y的最小值為
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(x,y)在映射f:A→B作用下的像是(x+y,x-y),x∈R,y∈R,則點(diǎn)(3,1)的原像是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案