(本小題滿分14分)設(shè)函數(shù).
(Ⅰ)已知曲線在點處的切線的斜率為,求實數(shù)的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)在(Ⅰ)的條件下,求證:對于定義域內(nèi)的任意一個,都有.
(Ⅰ).
(Ⅱ)當時,函數(shù)在上單調(diào)遞減;當時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
(Ⅲ)見解析.
【解析】對于對數(shù)函數(shù)問題,先列出定義域,的定義域為,再根據(jù)導(dǎo)數(shù)的幾何意義在x處導(dǎo)數(shù)為x處切線斜率,列式;
求出導(dǎo)數(shù),令導(dǎo)數(shù)>0,<0分類討論a的范圍,確定單調(diào)區(qū)間;
都有即
解:(Ⅰ)的定義域為, . ………1分
. ………2分
根據(jù)題意,,
所以,即,
解得. .………4分
(Ⅱ).
(1)當時,因為,所以,,
所以,函數(shù)在上單調(diào)遞減. ………6分
(2)當時,
若,則,,函數(shù)在上單調(diào)遞減;
若,則,,函數(shù)在上單調(diào)遞增. …8分
綜上所述,當時,函數(shù)在上單調(diào)遞減;當時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增. ………9分
(Ⅲ)由(Ⅰ)可知.
設(shè),即.
. ………10分
當變化時,,的變化情況如下表:
- |
0 |
+ |
|
極小值 |
是在上的唯一極值點,且是極小值點,從而也是的最小值點可見, .………13分
所以,即,所以對于定義域內(nèi)的每一個,都有. ………14分
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com