【題目】已知直線l過拋物線E:y2=2px(p>0)的焦點F且與x垂直,l與E所圍成的封閉圖形的面積為24,若點P為拋物線E上任意一點,A(4,1),則|PA|+|PF|的最小值為( )
A.6
B.4+2
C.7
D.4+2
科目:高中數(shù)學 來源: 題型:
【題目】某市8所中學生參加比賽的得分用莖葉圖表示(如圖)其中莖為十位數(shù),葉為個位數(shù),則這組數(shù)據(jù)的平均數(shù)和方差分別是( )
A.91 5.5
B.91 5
C.92 5.5
D.92 5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交BC于點E,AB=2AC,
(1)求證:BE=2AD;
(2)求函數(shù)AC=1,BC=2時,求AD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐的四個頂點均在半徑為2的球面上,且滿足,,,則三棱錐的側(cè)面積的最大值為( )
A. 2 B. 4 C. 8 D. 16
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知多面體ABC﹣A1B1C1中,底面△ABC為等邊三角形,邊長為2,AA1⊥平面ABC,四邊形A1ACC1為直角梯形,CC1與平面ABC所成的角為 ,AA1=1
(1)若P為AB的中點,求證:A1P∥平面BC1C;
(2)求二面角A1﹣BC1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的參數(shù)方程是 (θ為參數(shù)),曲線C與l的交點的極坐標為(2, )和(2, ),
(1)求直線l的普通方程;
(2)設P點為曲線C上的任意一點,求P點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 (a>b>0)右頂點與右焦點的距離為 ﹣1,短軸長為2 .
(1)求橢圓的方程;
(2)過左焦點F的直線與橢圓分別交于A、B兩點,若三角形OAB的面積為 ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 ( , )的左、右焦點分別為、 ,過 的直線交雙曲線右支于 , 兩點,且 ,若 ,則雙曲線的離心率為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com