3.已知向量$\overrightarrow{a}$,$\overrightarrow$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$•$\overrightarrow$=2,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.3B.1+$\sqrt{2}$C.7D.$\sqrt{7}$

分析 根據(jù)向量的數(shù)量積公式計算向量模即可.

解答 解:∵|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$•$\overrightarrow$=2,
∴|$\overrightarrow{a}$+$\overrightarrow$|2=|$\overrightarrow{a}$|2+|$\overrightarrow$|2+2$\overrightarrow{a}$•$\overrightarrow$=1+2+4=7,
∴|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$,
故選:D

點評 本題考查了向量的數(shù)量積公式和向量模的計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.設隨機變量ξ~N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.直線l1:x+(1-a)y-3=0與l2:(a-1)x+ay+3=0互相垂直,則實數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知服從正態(tài)分布N(μ,σ2)的隨機變量,在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)內(nèi)取值的概率分別為68.3%,95.4%和99.7%.某大型國有企業(yè)為10000名員工定制工作服,設員工的身高(單位:cm)服從正態(tài)分布N(173,52),則適合身高在163~178cm范圍內(nèi)員工穿的服裝大約要定制( 。
A.6830套B.9540套C.8185套D.9755套

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設數(shù)列{an}是公差大于0的等差數(shù)列,Sn為數(shù)列{an}的前n項和.已知S3=9,且2a1,a3-1,a4+1構成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$(n∈N*),設Tn要是數(shù)列{bn}在前n項和,證明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在直角坐標系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=tcosα\\ y=-\frac{{\sqrt{2}}}{2}+tsinα\end{array}$(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2$\sqrt{2}$cos(θ+$\frac{π}{6}}$).
(Ⅰ)寫出圓C的普通方程;
(Ⅱ)設l與C交于A,B兩點,弦|AB|=$\sqrt{5}$,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知數(shù)列{an}的通項公式an=11-2n.
(1)求數(shù)列{an}的前n項和Sn
(2)若設Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且acosC,bcosA,ccosA成等差數(shù)列.
(1)求角A的大小;
(2)若a=3,$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,求$|\overrightarrow{AD}|$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若關于x的方程f(x)=mx2+3x-m-2有且只有一個零點在區(qū)間(0,1)內(nèi),則實數(shù)m的取值范圍是(-2,+∞).

查看答案和解析>>

同步練習冊答案