【題目】某網(wǎng)絡購物平臺每年1111日舉行“雙十一”購物節(jié),當天有多項優(yōu)惠活動,深受廣大消費者喜愛

1)已知該網(wǎng)絡購物平臺近5年“雙十”購物節(jié)當天成交額如下表:

年份

2015

2016

2017

2018

2019

成交額(百億元)

9

12

17

21

27

求成交額(百億元)與時間變量(記2015年為,2016年為,……依次類推)的線性回歸方程,并預測2020年該平臺“雙十一”購物節(jié)當天的成交額(百億元);

2)在2020年“雙十一”購物節(jié)前,某同學的爸爸、媽媽計劃在該網(wǎng)絡購物平臺.上分別參加兩店各一個訂單的“秒殺”搶購,若該同學的爸爸、媽媽在、兩店訂單“秒殺”成功的概率分別為、,記該同學的爸爸和媽媽搶購到的訂單總數(shù)量為

i)求的分布列及;

ii)已知每個訂單由件商品構(gòu)成,記該同學的爸爸和媽媽搶購到的商品總數(shù)量為,假設(shè),,求取最大值時正整數(shù)的值.

附:回歸方程中斜率和截距的最小二乘估計公式分別為:,

【答案】1;30.7百億元;(2)(i)分布列詳見解析,;(ii3

【解析】

1)計算,求出系數(shù),寫出線性回歸方程,利用方程計算的值即可;

2由題意知隨機變量的可能取值,計算對應的概率值,寫出分布列,求出數(shù)學期望值;

根據(jù)題意求出的解析式,利用換元法和求導法計算取最大值時正整數(shù)的值.

解:(1)由已知可得:

所以

所以

所以

時,(百億元)

所以估計2020年該平臺“雙十一”購物節(jié)當天的成交額為30.7(百億元)

2)(ⅰ)由題知,的可能取值為:0,1,2

所以的分布列為:

0

1

2

(ⅱ)因為

所以

,設(shè),則

因為,且

所以,當時,,所以在區(qū)間上單調(diào)遞增;

時,,所以在區(qū)間上單調(diào)遞減;

所以,當時,(百億元)

所以取最大值時的值為3

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,為正三角形,,,,點在線段的中點,點為線段的中點.

1)在線段上是否存在點,使得平面?若存在,指出點的位置;若不存在,請說明理由.

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是拋物線的焦點,過點且與坐標軸不垂直的直線交拋物線于、兩點,交拋物線的準線于點,其中,.過點軸的垂線交拋物線于點,直線交拋物線于點.

1)求的值;

2)求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天文學中為了衡量星星的明暗程度,古希臘天文學家喜帕恰斯(,又名依巴谷)在公元前二世紀首先提出了星等這個概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應用,英國天文學家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(較小時, )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為2.

1)求拋物線的方程;

2)若過點作互相垂直的兩條直線,與拋物線交于兩點,與拋物線交于,兩點,,分別為弦的中點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場春節(jié)期間推出一項優(yōu)惠活動,活動規(guī)則如下:消費額每滿300元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置.若指針停在區(qū)域Ⅰ返券60元;停在區(qū)域Ⅱ返券30元;停在區(qū)域Ⅲ不返券.例如:消費600元,可抽獎2次,所獲得的返券金額是兩次金額之和.

(Ⅰ)若某位顧客消費300元,求返券金額不低于30元的概率;

(Ⅱ)若某位顧客恰好消費600元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,為橢圓的右焦點,,為橢圓的上、下頂點,且的面積為

1)求橢圓的方程;

2)動直線與橢圓交于,兩點,證明:在第一象限內(nèi)存在定點,使得當直線與直線的斜率均存在時,其斜率之和是與無關(guān)的常數(shù),并求出所有滿足條件的定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】醫(yī)院為篩查某種疾病,需要血檢,現(xiàn)有份血液樣本,有以下兩種檢驗方式:

方式一:逐份檢驗,需要檢驗次;

方式二:混合檢驗,把每個人的血樣分成兩份,取個人的血樣各一份混在一起進行檢驗,如果結(jié)果是陰性,那么對這個人只作一次檢驗就夠了;如果結(jié)果是陽性,那么再對這個人的另一份血樣逐份檢驗,此時這份血液的檢驗次數(shù)總共為.

1)假設(shè)有6份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗岀來的概率;

2)假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是相互獨立的,且每份樣本是陽性結(jié)果的概率為.現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

①運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式

②若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年高考數(shù)學的全國Ⅲ卷中,文科和理科的選做題題目完全相同,第22題考查選修4-4:極坐標和參數(shù)方程;第23題考查選修4-5:不等式選講.某校高三質(zhì)量檢測的命題采用了全國Ⅲ卷的形式,在測試結(jié)束后,該校數(shù)學組教師對該校全體高三學生的選做題得分情況進行了統(tǒng)計,得到兩題得分的列聯(lián)表如下(已知每名學生只做了一道題):

選做22

選做23

合計

文科人數(shù)

50

60

理科人數(shù)

40

總計

400

1)完善列聯(lián)表中的數(shù)據(jù),判斷能否有的把握認為“選做題的選擇”與“文、理科的科類”有關(guān);

2)經(jīng)統(tǒng)計,第23題得分為0的學生中,理科生占理科總?cè)藬?shù)的,文科生占文科總?cè)藬?shù)的,在按分層抽樣的方法在第23題得分為0的學生中隨機抽取6名進行單獨輔導,并在輔導后隨機抽取2名學生進行測試,求被抽中進行測試的2名學生均為理科生的概率.

附:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案