在空間中,用a,b,c表示三條不同的直線,γ表示平面,給出下列四個(gè)命題:
①若a∥b,b∥c,則a∥c;        ②若a⊥b,b⊥c,則a⊥c;
③若a∥γ,b∥γ,則a∥b;        ④若a⊥γ,b⊥γ,則a∥b;
其中真命題的序號(hào)為   
【答案】分析:①有平行線公理判斷即可;
②中正方體從同一點(diǎn)出發(fā)的三條線進(jìn)行判斷;
③可以翻譯為:平行于同一平面的兩直線平行,錯(cuò)誤,還有相交、異面兩種情況;
④由線面垂直的性質(zhì)定理可得;
解答:解:①因?yàn)榭臻g中,用a,b,c表示三條不同的直線,
若a∥b,b∥c,則a∥c,滿足平行線公理,所以①正確;
②中正方體從同一點(diǎn)出發(fā)的三條線,也錯(cuò)誤;
③可以翻譯為:平行于同一平面的兩直線平行,錯(cuò)誤,還有相交、異面兩種情況;
④可以翻譯為:垂直于同一平面的兩直線平行,由線面垂直的性質(zhì)定理,正確;
故答案為:①④.
點(diǎn)評(píng):與立體幾何有關(guān)的命題真假判斷,要多結(jié)合空間圖形.本題考查空間兩條直線的位置關(guān)系以及判定方法,線面平行的判定,解決時(shí)要緊緊抓住空間兩條直線的位置關(guān)系的三種情況,牢固掌握線面平行、垂直的判定及性質(zhì)定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、在空間中,用a,b,c表示三條不同的直線,γ表示平面,給出下列四個(gè)命題:
①若a∥b,b∥c,則a∥c;        ②若a⊥b,b⊥c,則a⊥c;
③若a∥γ,b∥γ,則a∥b;        ④若a⊥γ,b⊥γ,則a∥b;
其中真命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在空間中,用a,b,c表示三條不同的直線,γ表示平面,給出下列四個(gè)命題:
①若ab,bc,則ac;        ②若a⊥b,b⊥c,則a⊥c;
③若aγ,bγ,則ab;        ④若a⊥γ,b⊥γ,則ab;
其中真命題的序號(hào)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省海安縣高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

在空間中,用a,b,c表示三條不同的直線,γ表示平面,給出下列四個(gè)命題:
①若a∥b,b∥c,則a∥c;        ②若a⊥b,b⊥c,則a⊥c;
③若a∥γ,b∥γ,則a∥b;        ④若a⊥γ,b⊥γ,則a∥b;
其中真命題的序號(hào)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省海安縣高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

在空間中,用a,b,c表示三條不同的直線,γ表示平面,給出下列四個(gè)命題:
①若a∥b,b∥c,則a∥c;        ②若a⊥b,b⊥c,則a⊥c;
③若a∥γ,b∥γ,則a∥b;        ④若a⊥γ,b⊥γ,則a∥b;
其中真命題的序號(hào)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案