設(shè)數(shù)列{an}和{bn}均為等差數(shù)列,它們前n項(xiàng)和分別為Sn和Tn,且數(shù)學(xué)公式,則數(shù)學(xué)公式=________.


分析:直接利用等差數(shù)列前n項(xiàng)和的知識(shí),S2n+1=(2n+1)an,求出的值.
解答:因?yàn)榈炔顢?shù)列前n項(xiàng)和中,S2n+1=(2n+1)an,
所以S9=9a5,T9=9b5
所以,

故答案為:
點(diǎn)評(píng):本題是基礎(chǔ)題,考查等差數(shù)列的基本性質(zhì),注意奇數(shù)項(xiàng)的和與中間項(xiàng)的關(guān)系是解題的關(guān)鍵,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+b,當(dāng)x∈[a1,b1]時(shí)值域?yàn)閇a2,b2],當(dāng)x∈[a2,b2]時(shí)值域?yàn)閇a3,b3],當(dāng)x∈[an-1,bn-1]時(shí)值域?yàn)閇an,bn]…其中a、b為常數(shù),a1=0,b1=1
(1)若a=1,b=2,求數(shù)列{an}和{bn}的通項(xiàng)公式.
(2)若a>0,a≠1,要使數(shù)列{bn}是公比不為1的等比數(shù)列,求b的值.
(3)若a>0,設(shè)數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,求Tn-Sn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆湖北省天門市高三模擬考試(二)理科數(shù)學(xué) 題型:單選題

設(shè)數(shù)列{an}和{bn}的通項(xiàng)公式為an=和bn=(n∈N*),它們的前n項(xiàng)和依次為An和Bn,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門市高三模擬考試(二)理科數(shù)學(xué) 題型:選擇題

設(shè)數(shù)列{an}和{bn}的通項(xiàng)公式為an=和bn=(n∈N*),它們的前n項(xiàng)和依次為An和Bn,則

   A.                B.               C.               D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax+b,當(dāng)x∈[a1,b1]時(shí)值域?yàn)閇a2,b2],當(dāng)x∈[a2,b2]時(shí)值域?yàn)閇a3,b3],當(dāng)x∈[an-1,bn-1]時(shí)值域?yàn)閇an,bn]…其中a、b為常數(shù),a1=0,b1=1
(1)若a=1,b=2,求數(shù)列{an}和{bn}的通項(xiàng)公式.
(2)若a>0,a≠1,要使數(shù)列{bn}是公比不為1的等比數(shù)列,求b的值.
(3)若a>0,設(shè)數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,求Tn-Sn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省天門市高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:選擇題

設(shè)數(shù)列{an}和{bn}的通項(xiàng)公式為an=和bn=(n∈N*),它們的前n項(xiàng)和依次為An和Bn,則=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案