設(shè)和是函數(shù)的兩個(gè)極值點(diǎn),其中,.
(1)求的取值范圍;
(2)若,求的最大值.注:e是自然對(duì)數(shù)的底.
(1) ;2).
解析試題分析:(1)先判斷函數(shù)的定義域,再求函數(shù)的導(dǎo)函數(shù),根據(jù)極值點(diǎn)為導(dǎo)數(shù)為0時(shí)的根,找出函數(shù)中所含未知數(shù)的范圍和兩個(gè)極值點(diǎn)與的關(guān)系,再求的取值范圍;(2)先設(shè),再化簡(jiǎn)已知不等式,用表示出來(lái),然后就計(jì)算得出關(guān)于的表達(dá)式,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求新函數(shù)的單調(diào)性,可知新函數(shù)的最值,即為所求.
試題解析:(1)解:函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/bb/3/1ffun3.png" style="vertical-align:middle;" />,.
依題意,方程有兩個(gè)不等的正根,(其中).故
,
并且 .
所以,
故的取值范圍是. 7分
(2)解當(dāng)時(shí),.若設(shè),則
.
于是有
構(gòu)造函數(shù)(其中),則.
所以在上單調(diào)遞減,.
故的最大值是. 15分
考點(diǎn):1、利用導(dǎo)函數(shù)求最值及極值;2、轉(zhuǎn)化思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),且.
(1)判斷的奇偶性并說(shuō)明理由;
(2)判斷在區(qū)間上的單調(diào)性,并證明你的結(jié)論;
(3)若對(duì)任意實(shí)數(shù),有成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,其中且.
(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若時(shí),函數(shù)有極值,求函數(shù)圖象的對(duì)稱中心坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對(duì)數(shù)的底數(shù)),是否存在a使在上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求的最小正周期和最小值;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù),過(guò)曲線上的點(diǎn)的切線方程為.
(1)若在時(shí)有極值,求的表達(dá)式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(其中為常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),設(shè)函數(shù)的3個(gè)極值點(diǎn)為,且.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)在上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com