(1)求曲線C的方程;
(2)已知點A(5,0)、B(1,0),過點A作直線交曲線C于兩個不同的點P、Q,△BPQ的面積S是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
(文)如圖b所示,線段AB過x軸正半軸上一點M(m,0)(m>0),端點A,B到x軸距離之積為2m,以x軸為對稱軸、過A,O,B三點作拋物線.
(1)求拋物線方程;
(2)若tan∠AOB=-1,求m的取值范圍.
第21題圖
答案:(理)(1)設點T的坐標為(x,y),點M的坐標為(x′,y′),則M1的坐標為(0,y′).
∵,
∴點N的坐標為.
∴N1的坐標為(),
∴=(x′,0),
∵,∴,
又∵,∴x′2+y′2=5.
∴x2+=5,即=1為曲線C的方程.
(2)點A(5,0)在曲線C即橢圓的外部,當直線l的斜率不存在時,直線l與橢圓C無交點,所以直線l的斜率存在.又三點B、P、Q可構成三角形,
∴設直線l的方程為:x-my=5(m0).
由方程組,得(4m2+5)y2+40my+80=0.
依題意△=320(m2-5)>0,得m>或m<.
設點P(x1,y1),Q(x2,y2).
點B到直線l的距離為d=
|PQ|=|y1-y2|=.
∴S△BPQ=d·|PQ|
=
即S△BPQ=.
下面考查函數(shù)t=.
∵
=16(m2-5)+200≥400,
當且僅當16(m2-5)=即m=±時等號成立,滿足條件m>或m<.
此時m<t2≤,0<t≤,0<S△BPQ≤.
∴△BPQ的面積S存在最大值為.
(文)(1)當AB不垂直于x軸時,設AB方程為y=k(x-m),拋物線方程為y2=2px(p>0)
由得ky2-2py-2pkm=0,
∴y1y2=-2pm,∴|y1y2|=2pm=2m
∴p=1.
當AB⊥x軸時,A,B分別為(m,),(m,),由題意有2pm=2m,P=1,故所求拋物線方程為y2=2x.
(2)設A(,y1),B(,y2)
由(1)知y1y2=-2m,y1+y2=.
∴|y1-y2|=,
又tan∠AOB=-1,k1=,k2=,
∴,
即y1y2+4=2|y1-y2|,
∴-2m+4= ①
平方后化簡得m2-12m+4=
∴m2-12m+4>0,∴m<6或m>6+
又由①知-2m+4>0,∴m<2,
∴m的取值范圍為0<m<6
當m=6且AB⊥x軸時,y1=2(-1),y2=-2(-1),y1y2=-4(-1)2=-2m.
tan∠AOB=-1符合條件,故符合條件的m的取值范圍為0<m≤6.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)求二面角B1-AC-B的平面角的正切值;
(2)如何確定點E的位置,使得GE⊥AB1?并求此時C、E兩點的距離.
(文)如圖b所示,直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,AC=BC=a,AA1=AB,C點在AB1上的射影為E,D為AB的中點.
(1)求證:AB1⊥平面CED;
(2)求二面角B1-AC-B的平面角的正切值.
第17題圖
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)在AB上求一點D,使沿折線PDAO修建公路的總造價最小;
(2)對于(1)中得到的點D,在DA上求一點E,使沿折線PDEO修建公路的總造價最。
(3)在AB上是否存在兩個不同的點D′,E′,使沿折線.PD′E′O修建公路的總造價小于(2)中得到的最小總造價?證明你的結論.
a)
第19題圖
(文)如圖b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC為等邊三角形,且AA1=AD=DC=2.
(1)求AC1與BC所成角的余弦值;
(2)求二面角C1-BD-C的大;
(3)設M是BD上的點,當DM為何值時,D1M⊥平面A1C1D?并證明你的結論.
第19題圖
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2010湖南理數(shù))19.(本小題滿分13分)
為了考察冰川的融化狀況,一支科考隊在某冰川上相距8km的A,B兩點各建一個考察基地。視冰川面為平面形,以過A,B兩點的直線為x軸,線段AB的的垂直平分線為y軸建立平面直角坐標系(圖6)在直線x=2的右側,考察范圍為到點B的距離不超過km區(qū)域;在直線x=2的左側,考察范圍為到A,B兩點的距離之和不超過km區(qū)域。
(Ⅰ)求考察區(qū)域邊界曲線的方程;
(Ⅱ)如圖6所示,設線段P1P2,P2P3是冰川的部分邊界線(不考慮其他邊界線),當冰川融化時,邊界線沿與其垂直的方向朝考察區(qū)域平行移動,第一年移動0.2km,以后每年移動的距離為前一年的2倍,求冰川邊界線移動到考察區(qū)域所需的最短時間。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com