分析 漸近線方程y=-2x,實軸長為4,進而可知b的關(guān)系,判斷焦點坐標所在的軸,即可求解雙曲線的方程.
解答 解:雙曲線Γ中心在坐標原點,焦點在坐標軸上,又Γ的實軸長為4,且一條漸近線為y=2x,
可得雙曲線的焦點坐標在x軸時,a=4,b=8,雙曲線方程為:$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{64}=1$;
雙曲線的焦點坐標在y軸時,a=4,b=2,雙曲線方程為:$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{4}=1$;
點評 本題主要考查了雙曲線的簡單性質(zhì).考查了學(xué)生對雙曲線方程基礎(chǔ)知識的掌握和運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≥1} | B. | {x|1≤x<2} | C. | {x|x>2} | D. | {x|x>2或x<0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a-b | B. | 2b-a | C. | b-a | D. | -( b-a ) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{113}}{2}$ | B. | 5 | C. | $\sqrt{41}$ | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({2\sqrt{2}+2})π+96$ | B. | $({2\sqrt{2}+1})π+96$ | C. | $({\sqrt{2}+2})π+96$ | D. | $({\sqrt{2}+1})π+96$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com