一次函數(shù)的圖象的交點(diǎn)組成的集合是(    )

A.            B.            C.          D.

 

【答案】

D

【解析】

試題分析:∵,∴即點(diǎn)(1,4),故一次函數(shù)的圖象的交點(diǎn)組成的集合是

考點(diǎn):本題考查了函數(shù)的圖象

點(diǎn)評(píng):聯(lián)立方程即可求得兩函數(shù)圖象的交點(diǎn),另外本題還要注意點(diǎn)集和數(shù)集的區(qū)別與聯(lián)系。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R.且滿足a>b>c,f(1)=0.
(Ⅰ)證明:當(dāng)a=3、b=2時(shí)函數(shù)f(x)與g(x)的圖象交于不同的兩點(diǎn)A,B.
(Ⅱ)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值為21,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)=x2-bx+1,且y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱.又y=f(x)的圖象與一次函數(shù)g(x)=kx+2(k<0)的圖象交于兩點(diǎn)A、B,且|AB=
10
|.
(1)求b及k的值;
(2)記函數(shù)F(x)=f(x)g(x),求F(x)在區(qū)間[0,1]上的最小值;
(3)若sinα,sinβ,sinγ∈[0,1],且sinα+sinβ+sinγ=1,試根據(jù)上述(1)、(2)的結(jié)論證明:
sinα
1+sin2α
+
sinβ
1+sin2β
+
sinγ
1+sin2γ
9
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一次函數(shù)f(x)=mx+n與指數(shù)型函數(shù)g(x)=ax+b(a>0,a≠1)的圖象交于兩點(diǎn)A(0,1),B(1,2),解答下列各題:
(1)求一次函數(shù)f(x)和指數(shù)型函數(shù)g(x)的表達(dá)式;
(2)作出這兩個(gè)函數(shù)的圖象;
(3)填空:當(dāng)x∈
[0,1]
[0,1]
時(shí),f(x)≥g(x);當(dāng)x∈
(-∞,0)∪(1,+∞)
(-∞,0)∪(1,+∞)
時(shí),f(x)<g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R且滿足a>b>c,f(1)=0.
(1)證明:函數(shù)f(x)與g(x)的圖象交于不同的兩點(diǎn)A,B;
(2)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值為9,最大值為21,試求a,b的值;
(3)求線段AB在x軸上的射影A1B1的長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蚌埠三中高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

一次函數(shù)f(x)=mx+n與指數(shù)型函數(shù)g(x)=ax+b(a>0,a≠1)的圖象交于兩點(diǎn)A(0,1),B(1,2),解答下列各題:
(1)求一次函數(shù)f(x)和指數(shù)型函數(shù)g(x)的表達(dá)式;
(2)作出這兩個(gè)函數(shù)的圖象;
(3)填空:當(dāng)x∈______時(shí),f(x)≥g(x);當(dāng)x∈______時(shí),f(x)<g(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案