設(shè)函數(shù)f(x)=|2x+1|-|x-2|.
(Ⅰ)求不等式的解集;
(Ⅱ)若{x|f(x)≥-t}∩{y|0≤y≤1}≠,求實(shí)數(shù)t的取值范圍.
(Ⅰ)解集為;(Ⅱ).
【解析】
試題分析:(Ⅰ)解不等式,首先將轉(zhuǎn)化為分段函數(shù),然后利用分段函數(shù)分段解不等式,從而求出不等式的解;易錯(cuò)點(diǎn),不知將轉(zhuǎn)化為分段函數(shù);(Ⅱ)不等式,即在時(shí)有解,只要在的最大值大于即可,因此只需求出在的最大值即可, 而,易求出最大值,然后解一元二次不等式即可.
試題解析:(Ⅰ),所求解集為
(Ⅱ)依題意得在時(shí)有解,,,則
考點(diǎn):本小題考查絕對(duì)值不等式的解法,考查學(xué)生數(shù)形結(jié)合的能力以及化歸與轉(zhuǎn)化思想,以及學(xué)生的運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省高二第四學(xué)段模塊考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知實(shí)數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3-x2+ax.
(Ⅰ)當(dāng)a=2時(shí),求f (x)的極小值;
(Ⅱ)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.求證:g(x)的極大值小于等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省洛陽(yáng)市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分10分)選修4—5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|x+2|.
(1)解不等式f(x)>3;
(2)若關(guān)于x的不等式f(x)≤|2a-1|的解集不是空集,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省洛陽(yáng)市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)f(x)=+-1.
(1)若x≥0時(shí),f(x)≥0恒成立,求a的取值范圍;
(2)求證:對(duì)于大于1的正整數(shù)n,恒有1+<<1+成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆北京市高一上學(xué)期期中考試數(shù)學(xué)AP班 題型:選擇題
設(shè)函數(shù)f(x)=a(a>0),且f(2)=4,則
A. f(-1)>f(-2) B. f(1)>f(2)
C. f(2)<f(-2) D.f(-3)>f(-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆北京市高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題
已知:集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域內(nèi)存在x,使得
f(x+1)=f(x)+f(1)成立。
(1)函數(shù)f(x)=是否屬于集合M?說(shuō)明理由;
(2)設(shè)函數(shù)f(x)=lg,求實(shí)數(shù)a的取值范圍;
(3)證明:函數(shù)f(x)=2+xM。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com