5.圖中的偽代碼運(yùn)行后輸出的結(jié)果是3.

分析 通過分析偽代碼,按照代碼進(jìn)行執(zhí)行,根據(jù)賦值語句的功能求解即可得解.

解答 解:根據(jù)已知偽代碼,可得:
a=3
b=-5
c=3
a=-5
b=3
輸出b的值為3.
故答案為:3.

點(diǎn)評 本題考查偽代碼,理解賦值語句的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知p是函數(shù)f(x)=x2-bx+1的零點(diǎn),試求$\frac{b-4}{p}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)等差數(shù)列{an}的前n項和為Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=a2n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2$\sqrt{3}sin(ωx+\frac{π}{4})sin(\frac{π}{4}-ωx)+sin2ωx+a(ω>0)$的圖象與直線y=m(m>0)相切,并且切點(diǎn)橫坐標(biāo)依次成公差為π的等差數(shù)列,且f(x)的最大值為1.
(1)x∈[0,π],求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將f(x)的圖象向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,若函數(shù)y=g(x)-m在$[0,\frac{π}{2}]$上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在等比數(shù)列{an}中,若a1=1,a2a3=4(a4-1),則a7=$\frac{16}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖是某校高二年級舉辦的歌詠比賽上,七位評委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為3.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=2,如圖1的偽代碼的功能是求數(shù)列{an}的第m項am的值(m≥2),現(xiàn)給出此算法流程圖的一部分.
(1)直接寫出流程圖(圖2)中的空格①、②處應(yīng)填上的內(nèi)容,并寫出an與an+1之間的關(guān)系;
(2)若輸入的m值為2015,求輸出的a值(寫明過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)的定義域為(0,+∞),且f(x)為增函數(shù),f(xy)=f(x)+f(y).
(1)求證:f($\frac{{x}^{2}}{y}$)=2f(x)-f(y);
(2)若f(2)=1,且f(a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若變量x,y滿足$\left\{{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}}$,則$\frac{y+1}{x-2}$的最大值為$-\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案