精英家教網 > 高中數學 > 題目詳情

設函數,則下列結論錯誤的個數是(    )

的值域為     ②的圖像關于對稱

在區(qū)間上遞增  ④的最小正周期為

 A. 1           B.2            C.3           D. 4

 

【答案】

A

【解析】解:因為函數,可知函數的的值域為  ,成立

的圖像關于對稱不成立。在區(qū)間上遞增,的最小正周期為,成立。

選A

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f'(x)是f(x)的導數,記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個結論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導函數,h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結論正確的是
①②③
①②③
(多填、少填、錯填均得零分).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知f'(x)是f(x)的導數,記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個結論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導函數,h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結論正確的是______(多填、少填、錯填均得零分).

查看答案和解析>>

科目:高中數學 來源:2012-2013學年四川省達州市高二(下)期末數學試卷(文科)(解析版) 題型:填空題

已知f'(x)是f(x)的導數,記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個結論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導函數,h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結論正確的是    (多填、少填、錯填均得零分).

查看答案和解析>>

同步練習冊答案