設(shè)函數(shù), 則滿足=的x值為
A.B.2C.D.
C
當(dāng)時(shí),,此時(shí)無解;
當(dāng)時(shí),,滿足題意;故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)在區(qū)間上單調(diào)遞增,則實(shí)數(shù)的取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于x的方程=k(x-2)+1有兩解則k的取值范圍是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某公司為了實(shí)現(xiàn)2011年1000萬元利潤(rùn)的目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:銷售利潤(rùn)達(dá)到10萬元時(shí),按銷售利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金數(shù)額y(單位:萬元)隨銷售利潤(rùn)x(單位:萬元)的增加而增加,但獎(jiǎng)金數(shù)額不超過5萬元,同時(shí)獎(jiǎng)金數(shù)額不超過利潤(rùn)昀25%,現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:,問其中是否有模型能完全符合公司的要求?說明理由.
(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在同一平面直角坐標(biāo)系中,的圖象與的圖象關(guān)于直線對(duì)稱,而的圖象與的圖象關(guān)于點(diǎn)對(duì)稱,若,則實(shí)數(shù)的值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)已知函數(shù),其中e是自然數(shù)的底數(shù),。
(1)當(dāng)時(shí),解不等式
(2)若在[-1,1]上是單調(diào)增函數(shù),求的取值范圍;
(3)當(dāng)時(shí),求整數(shù)k的所有值,使方程在[k,k+1]上有解。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分l 2分)某書商為提高某套叢書的銷量,準(zhǔn)備舉辦一場(chǎng)展銷會(huì).據(jù)市場(chǎng)調(diào)查,當(dāng)每套叢書售價(jià)定為x元時(shí),銷售量可達(dá)到15一O.1x萬套.現(xiàn)出版社為配合該書商的活動(dòng),決定進(jìn)行價(jià)格改革,將每套叢書的供貨價(jià)格分成固定價(jià)格和浮動(dòng)價(jià)格兩部分,其中固定價(jià)格為30元,浮動(dòng)價(jià)格(單位:元)與銷售量(單位:萬套)成反比,比例系數(shù)為l0.假設(shè)不計(jì)其它成本,即銷售每套叢書的利潤(rùn) = 售價(jià) 一 供貨價(jià)格.問:
(I)每套叢書定價(jià)為100元時(shí),書商能獲得的總利潤(rùn)是多少萬元?
(Ⅱ)每套叢書定價(jià)為多少元時(shí),單套叢書的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域?yàn)锳,若且當(dāng)時(shí),總有,則稱為單函數(shù)。例如,函數(shù)是單函數(shù)。下列命題:
①函數(shù)是單函數(shù);
②若為單函數(shù),,則
③若為單函數(shù),則對(duì)于任意,它至多有一個(gè)原象;
④函數(shù)在A上具有單調(diào)性,則一定是單函數(shù)。
其中為真命題的是      。(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知某區(qū)的綠化覆蓋率的統(tǒng)計(jì)數(shù)據(jù)如下表所示,如果以后的幾年繼續(xù)依此速度發(fā)展綠化,那么到第       年年底該區(qū)的綠化覆蓋率可超過
年 份
第1年年底
第2年年底
第3年年底
第4年年底
綠化覆蓋率
22.2%
23.8%
25.4%
27.0%
 

查看答案和解析>>

同步練習(xí)冊(cè)答案