2.在某項體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:93,89,92,95,93,94,93,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差為( 。
A.92,2B.92,2.8C.93,2D.93,0.4

分析 根據(jù)所給的條件,看出七個數(shù)據(jù),根據(jù)分?jǐn)?shù)處理方法,去掉一個最高分95和一個最低分89后,把剩下的五個數(shù)字求出平均數(shù)和方差.

解答 解:由題意知,去掉一個最高分95和一個最低分89后,
所剩數(shù)據(jù)93,92,93,94,93的平均數(shù)為 $\frac{93+92+93+94+93}{5}$=93;
方差為$\frac{1}{5}$[(93-93)2+(92-93)2+(93-93)2+(94-93)2+(93-93)2]=0.4,
故選:D.

點評 本題考查用樣本的平均數(shù)、方差,屬基礎(chǔ)題,熟記樣本的平均數(shù)、方差公式是解答好本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出下列四個命題:
①“三個球全部放入兩個盒子,其中必有一個盒子有一個以上的球”是必然事件
②“當(dāng)x為某一實數(shù)時可使x2<0”是不可能事件
③“明天安順要下雨”是必然事件
④“從100個燈泡中取出5個,5個都是次品”是隨機(jī)事件.
其中正確命題的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a、b為兩條不同的直線,α、β為兩個不同的平面.下列命題中,正確的是( 。
A.若a⊥α,b∥β,a⊥b,則α⊥βB.若a⊥α,b∥β,a∥b,則α⊥β
C.若a⊥α,a⊥β,則α⊥βD.若a∥β,b∥β,a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,a=4,A=60°,B=45°,則邊b的值為( 。
A.2$\sqrt{6}$B.2+2$\sqrt{2}$C.$\frac{4\sqrt{6}}{3}$D.2$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,直角三角形ABC中,∠C=90°,其內(nèi)切圓與斜邊AB相切于點D,若AD=3,BD=4,則△ABC的面積為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義:$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$為n個正數(shù)p1,p2,p3…pn的“均倒數(shù)”.若已知正數(shù)數(shù)列{an}的前n項的“均倒數(shù)”為$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}-1}{2}$,則$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+$\frac{1}{_{3}_{4}}$+…+$\frac{1}{_{2014}_{2015}}$=$\frac{2014}{4029}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題p:若xy≠6,則x≠2或y≠3;命題q:若方程x2-x+a=0有兩個正根,則0<a≤$\frac{1}{4}$,那么  ( 。
A.“p∨(¬q)”為假命題B.“(¬p)∨q”為假命題C.“p∧q”為真命題D.“¬(p∨q)”真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過點(2,0)且與直線x-2y-1=0垂直的直線方程是( 。
A.x-2y-2=0B.x-2y+2=0C.2x+y-4=0D.x+2y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知p:x2-2x-3>0,q:|x-1|<a,若¬p是q的充分不必要條件,則實數(shù)a的取值范圍是( 。
A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(1,++∞)

查看答案和解析>>

同步練習(xí)冊答案