16.已知函數(shù)f(x)=sin2$\frac{x}{2}$+$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[$\frac{π}{2}$,π],求f(x)的最大值與最小值.

分析 (Ⅰ)化函數(shù)f(x)為正弦型函數(shù),由T=$\frac{2π}{ω}$求出f(x)的最小正周期;
(Ⅱ)根據(jù)正弦函數(shù)的圖象與性質(zhì),求出f(x)在x∈[$\frac{π}{2}$,π]上的最大值與最小值.

解答 解:(Ⅰ)函數(shù)f(x)=sin2$\frac{x}{2}$+$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$
=$\frac{1-cosx}{2}$+$\frac{\sqrt{3}}{2}$sinx
=$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}$cosx+$\frac{1}{2}$
=sin(x-$\frac{π}{6}$)+$\frac{1}{2}$,
由T=$\frac{2π}{ω}$=2π,
知f(x)的最小正周期是2π;
(Ⅱ)由f(x)=sin(x-$\frac{π}{6}$)+$\frac{1}{2}$,
且x∈[$\frac{π}{2}$,π],
∴$\frac{π}{3}$≤x-$\frac{π}{6}$≤$\frac{5π}{6}$,
∴$\frac{1}{2}$≤sin(x-$\frac{π}{6}$)≤1,
∴1≤sin(x-$\frac{π}{6}$)+$\frac{1}{2}$≤$\frac{3}{2}$,
∴當(dāng)x=$\frac{2π}{3}$時,f(x)取得最大值$\frac{3}{2}$,
x=π時,f(x)取得最小值1.

點(diǎn)評 本題考查了三角恒等變換與三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知定義在R上函數(shù)f(x)滿足f(-x)+f(x)=0,且當(dāng)x>0時,f(x)=1+ax,若f(-1)=-$\frac{3}{2}$,則實(shí)數(shù)a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是某幾何體的三視圖,則該幾何體的表面積為(  )
A.48B.57C.63D.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給定實(shí)數(shù)x,定義[x]為不大于x的最大整數(shù),則下列結(jié)論中不正確的是( 。
A.x-[x]≥0
B.x-[x]<1
C.令f(x)=x-[x],對任意實(shí)數(shù)x,f(x+1)=f(x)恒成立
D.令f(x)=x-[x],對任意實(shí)數(shù)x,f(-x)=f(x)恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對于函數(shù)f(x),如果存在非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個值時,都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=x2,則y=f(x)與y=log5x的圖象的交點(diǎn)個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{3}$)(x∈R)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知α,β∈(0,$\frac{π}{2}$),且滿足sinα=$\frac{\sqrt{10}}{10}$,cosβ=$\frac{2\sqrt{5}}{5}$,則α+β的值為(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,1),若向量$\overrightarrow{a}$-λ$\overrightarrow$與向量$\overrightarrow{c}$=(5,-2)共線,則λ的值為( 。
A.$\frac{4}{3}$B.$\frac{4}{13}$C.-$\frac{4}{9}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若tanθ=$\frac{4}{3}$,sinθ<0,則cosθ=-$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊答案