【題目】設定義在(0,+∞)上的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞)都有f[f(x)﹣log2x]=3,若方程f(x)+f′(x)=a有兩個不同的實數(shù)根,則實數(shù)a的取值范圍是( 。
A.(1,+∞)
B.(2+ ,+∞)
C.(2﹣ ,+∞)
D.(3,+∞)

【答案】B
【解析】解:∵f(x)是定義在(0,+∞)上的單調(diào)函數(shù),f[f(x)﹣log2x]=3,

∴f(x)﹣log2x為大于0的常數(shù),

設t=f(x)﹣log2x,則f(x)=log2x+t(t>0),

又由f(t)=3,即log2t+t=3,解得t=2;

∴f(x)=log2x+2,f′(x)= ,

∴f(x)+f′(x)=log2x+2+ =a,

設g(x)=log2x+2+ ,則g′(x)= ,

∴函數(shù)g(x)在(0,1)上單調(diào)遞減,(1,+∞)上單調(diào)遞增,

∴x=1時,函數(shù)取得最小值2+

∵方程f(x)+f′(x)=a有兩個不同的實數(shù)根,

∴a>2+

故答案為:B.

由f(x)在(0,+∞)上的單調(diào)函數(shù),且f[f(x)﹣log2x]=3,則f(x)﹣log2x一定為大于0的常數(shù),進行換元,令設t=f(x)﹣log2x,不難得到f(x)=log2x+t(t>0),且f(t)=3,解得t=2,所以可得到f(x),f′(x),構造函數(shù)g(x)=f(x)+f′(x),求導,使得g(x)在(0,+∞)有兩個根即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某科技公司生產(chǎn)一種手機加密芯片,其質量按測試指標劃分為:指標大于或等于70為合格品,小于70為次品.現(xiàn)隨機抽取這種芯片共120件進行檢測,檢測結果統(tǒng)計如表:

測試指標

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片數(shù)量(件)

8

22

45

37

8

已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,
(1)求證:
(2)當x≥1時,f(x)≥lnx﹣a(x﹣1)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=2px(p>0),F(xiàn)為其焦點,過點(4,0)作垂直于x軸的直線交拋物線于A,B兩點,△ABF的周長為18.
(1)求拋物線的方程;
(2)過拋物線上的定點 作兩條關于直線y=p對稱的直線分別交拋物線于C,D兩點,連接CD,判斷直線CD的斜率是否為定值?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右頂點為 ,離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設過右焦點F且斜率不為0的動直線l與橢圓交于M,N兩點,過M作直線x=a2的垂線,垂足為M1 , 求證:直線M1N過定點,并求出定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ﹣alnx.
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)f(x)在區(qū)間(1,e2]內(nèi)恰有兩個零點,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=BC=CC1=2,AC=2 ,M是AC的中點,則異面直線CB1與C1M所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,圓C的極坐標方程為:ρ2=4ρ(cosθ+sinθ)﹣6.若以極點O為原點,極軸所在直線為x軸建立平面直角坐標系.
(Ⅰ)求圓C的參數(shù)方程;
(Ⅱ)在直角坐標系中,點P(x,y)是圓C上動點,試求x+y的最大值,并求出此時點P的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=aln(x+1),g(x)=ex﹣1,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(Ⅰ)當x≥0時,f(x)≤g(x)恒成立,求a的取值范圍;
(Ⅱ)求證: (參考數(shù)據(jù):ln1.1≈0.095).

查看答案和解析>>

同步練習冊答案