【題目】為迎接2017年“雙”,“雙”購物狂歡節(jié)的來臨,某青花瓷生產(chǎn)廠家計(jì)劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共個(gè),生產(chǎn)一個(gè)湯碗需分鐘,生產(chǎn)一個(gè)花瓶需分鐘,生產(chǎn)一個(gè)茶杯需分鐘,已知總生產(chǎn)時(shí)間不超過小時(shí).若生產(chǎn)一個(gè)湯碗可獲利潤(rùn)元,生產(chǎn)一個(gè)花瓶可獲利潤(rùn)元,生產(chǎn)一個(gè)茶杯可獲利潤(rùn)元.
(1)使用每天生產(chǎn)的湯碗個(gè)數(shù)與花瓶個(gè)數(shù)表示每天的利潤(rùn)(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
【答案】(1);(2)元.
【解析】試題分析:(1)由題意可得利潤(rùn)ω=5x+6y+3(100-x-y)=2x+3y+300;(2)根據(jù)題意得到約束條件和目標(biāo)函數(shù),根據(jù)線性規(guī)劃的解題步驟求解即可。
試題解析:
(1)依題意每天生產(chǎn)的茶杯個(gè)數(shù)為100-x-y,
所以利潤(rùn)ω=5x+6y+3(100-x-y)=2x+3y+300.
(2)由條件得約束條件為
,即 ,
目標(biāo)函數(shù)為ω=2x+3y+300,
作出不等式組表示的平面區(qū)域(如圖所示),
作初始直線l0:2x+3y=0,平移l0,由圖形知當(dāng)l0經(jīng)過點(diǎn)A時(shí),直線在y軸上的截距最大,此時(shí)ω有最大值,
由,解得
∴最優(yōu)解為A(50,50),
∴元.
故每天生產(chǎn)湯碗50個(gè),花瓶50個(gè),茶杯0個(gè)時(shí)利潤(rùn)最大,且最大利潤(rùn)為550元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】河南多地遭遇跨年霾,很多學(xué)校調(diào)整元旦放假時(shí)間,提前放假讓學(xué)生們?cè)诩依锒泠,鄭州市根?jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級(jí)為紅色預(yù)警的通知》.自12月29日12時(shí)將黃色預(yù)警升級(jí)為紅色預(yù)警,12月30日0時(shí)啟動(dòng)I級(jí)響應(yīng),明確要求:“幼兒園、中小學(xué)等教育機(jī)構(gòu)停課,停課不停學(xué)”,學(xué)生和家長(zhǎng)對(duì)停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的.某調(diào)查機(jī)構(gòu)為了了解公眾對(duì)該舉措的態(tài)度,隨機(jī)調(diào)查采訪了50人,將調(diào)查情況整理匯總成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 6 | 3 | 4 |
(1)請(qǐng)補(bǔ)全被調(diào)查人員年齡的頻率分布直方圖;
(2)若從年齡在的被調(diào)查者中分別隨機(jī)選取一人進(jìn)行追蹤調(diào)查,求這兩人都贊成“停課”這一舉措的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線(為參數(shù), ),其中,在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.
(Ⅰ)求與交點(diǎn)的直角坐標(biāo)系;
(Ⅱ)若與相交于點(diǎn),與相交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某蔬菜商店買進(jìn)的土豆(噸)與出售天數(shù)(天)之間的關(guān)系如表所示:
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)請(qǐng)根據(jù)表中數(shù)據(jù)在所給網(wǎng)格中繪制散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(其中保留2位有效數(shù)字);
(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該蔬菜商店買進(jìn)土豆40噸,則預(yù)計(jì)可以銷售多少天(計(jì)算結(jié)果保留整數(shù))?
附: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)的直線與中心在原點(diǎn),焦點(diǎn)在軸上且離心率為的橢圓相交于、兩點(diǎn),直線過線段的中點(diǎn),同時(shí)橢圓上存在一點(diǎn)與右焦點(diǎn)關(guān)于直線對(duì)稱.
(1)求直線的方程;
(2)求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義函數(shù)y=f(x),x∈D(定義域),若存在常數(shù)C,對(duì)于任意x1∈D,存在唯一的x2∈D,使得 =C,則稱函數(shù)f(x)在D上的“均值”為C,已知f(x)=lgx,x∈[10,100],則函數(shù)f(x)在[10,100]上的均值為( )
A.
B.
C.
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)是, ,且橢圓經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過橢圓的左焦點(diǎn)且斜率為1的直線與橢圓交于兩點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“足寒傷心,民寒傷國”,精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國夢(mèng)”的重要保障.某地政府在對(duì)石山區(qū)鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷,預(yù)計(jì)該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費(fèi)萬元之間的函數(shù)關(guān)系為(其中推廣促銷費(fèi)不能超過3萬元).已知加工此批農(nóng)產(chǎn)品還要投入成本萬元(不包含推廣促銷費(fèi)用),若加工后的每件成品的銷售價(jià)格定為元/件.
(1)試將該批產(chǎn)品的利潤(rùn)萬元表示為推廣促銷費(fèi)萬元的函數(shù);(利潤(rùn)銷售額成本推廣促銷費(fèi))
(2)當(dāng)推廣促銷費(fèi)投入多少萬元時(shí),此批產(chǎn)品的利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定下列函數(shù):①f(x)= ②f(x)=﹣|x|③f(x)=﹣2x﹣1 ④f(x)=(x﹣1)2 , 滿足“對(duì)任意x1 , x2∈(0,+∞),當(dāng)x1<x2時(shí),都有f(x1)>f(x2)”的條件是( )
A.①②③
B.②③④
C.①②④
D.①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com