已知二階矩陣屬于特征值-1的一個(gè)特征向量為,求矩陣A的逆矩陣.
【答案】分析:根據(jù)特征值的定義可知Aα=λα,利用待定系數(shù)法建立等式關(guān)系,從而可求矩陣A,再利用公式求逆矩陣.
解答:解:由矩陣A屬于特征值-1的一個(gè)特征向量為α1=,
可得 =-,得
即a=1,b=3;            …(3分)
解得A=,…(8分)
∴A逆矩陣是A-1==
點(diǎn)評(píng):本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,同時(shí)考查了逆矩陣求解公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(A)4-2矩陣與變換
已知二階矩陣M的特征值是λ1=1,λ2=2,屬于λ1的一個(gè)特征向量是e1=
1
1
,屬于λ2的一個(gè)特征向量是e2=
-1
2
,點(diǎn)A對(duì)應(yīng)的列向量是a=
1
4

(Ⅰ)設(shè)a=me1+ne2,求實(shí)數(shù)m,n的值.
(Ⅱ)求點(diǎn)A在M5作用下的點(diǎn)的坐標(biāo).

(B)4-2極坐標(biāo)與參數(shù)方程
已知直線l的極坐標(biāo)方程為ρsin(θ-
π
3
)=3
,曲線C的參數(shù)方程為
x=cosθ
y=3sinθ
,設(shè)P點(diǎn)是曲線C上的任意一點(diǎn),求P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-2:矩陣與變換
已知二階矩陣A=
ab
cd
,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α1=
1
-1
,屬于特征值λ2=4的一個(gè)特征向量為α2=
3
2
.求矩陣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[選做題]已知二階矩陣M屬于特征值3的一個(gè)特征向量為
e
=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變成點(diǎn)(9,15),求出矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省鹽城中學(xué)高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi) 作答.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線l,過(guò)A作l的垂線AD,AD分別與直線l、圓交于點(diǎn)D、E.求∠DAC的度數(shù)與線段AE的長(zhǎng).
B.已知二階矩陣屬于特征值-1的一個(gè)特征向量為,求矩陣A的逆矩陣.

C.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為(t為參數(shù),t∈{R}).試求曲線C上點(diǎn)M到直線l的距離的最大值.
D.(1)設(shè)x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請(qǐng)給出證明;如果不成立,請(qǐng)舉出一個(gè)使它不成立的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案