已知函數(shù)f(x)=
sinπx(x<0)
f(x-1)-1(x>0)
,如果當(dāng)-2<m<0時(shí),有f(
11
6
)+f(m)=-2,則實(shí)數(shù)m等于
 
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,先求f(
11
6
)=f(
5
6
)-1=f(-
1
6
)-2=sin(-
1
6
π)-2=-
5
2
;從而化f(
11
6
)+f(m)=-2為f(m)=
1
2
,從而求解.
解答: 解:f(
11
6
)=f(
5
6
)-1
=f(-
1
6
)-2=sin(-
1
6
π)-2=-
5
2

故f(
11
6
)+f(m)=-2可化為
f(m)=
1
2
,
即sinmπ=
1
2

又∵-2<m<0,
-
7
6
-
11
6

故答案為:-
7
6
-
11
6
點(diǎn)評:本題考查了分段函數(shù)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3
,
a
b
=-12
,則向量
b
在向量
a
方向上的投影的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+ax+b,滿足f(0)=6,f(1)=5.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[-2,2]時(shí),求函數(shù)y=f(x)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)準(zhǔn)備招聘一批大學(xué)生到本單位就業(yè),但在簽約前要對他們的某項(xiàng)專業(yè)技能進(jìn)行測試.在待測試的某一個(gè)小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機(jī)選2人參加測試,其中恰為一男一女的概率為
8
15

(Ⅰ)求該小組中女生的人數(shù);
(Ⅱ)假設(shè)此項(xiàng)專業(yè)技能測試對該小組的學(xué)生而言,每個(gè)女生通過的概率均為
3
4
,每個(gè)男生通過的概率均為
1
2
,現(xiàn)對該小組中男生甲、男生乙和女生丙3個(gè)人進(jìn)行測試,求這3人中通過測試的人數(shù)不少于2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+bx的圖象在點(diǎn)A(1,f(1))處的切線的斜率為4,則函數(shù)g(x)=
3
sin2x+bcos2x的最大值是(  )
A、1
B、2
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x3+ax與g(x)=bx2+c(2,0),且在點(diǎn)P處有公共切線,則函數(shù)g (x)的表達(dá)式為( 。
A、2x2-4x
B、6x2-24
C、-4x2+16
D、4x2-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將周期為π的函數(shù)y=sin2ωx+2sinωxcosωx-cos2ωx(ω>0)的圖象按
a
=(-
π
8
,1)平移后,所得函數(shù)圖象的解析式為( 。
A、y=
2
sin(4x+
π
4
)-1
B、y=
2
sin2x+1
C、y=
2
sin(2x-
π
8
)+1
D、y=1-
2
cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
4
x-2
在區(qū)間[3,6]上的最小值是( 。
A、1B、3C、-2D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線過點(diǎn)P(0,2),且在x軸上的截距是2,則直線的傾斜角是
 

查看答案和解析>>

同步練習(xí)冊答案