已知函數(shù)數(shù)學(xué)公式
(1)若函數(shù)f(x)有三個零點(diǎn)x1,x2,x3,且數(shù)學(xué)公式,且a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若數(shù)學(xué)公式,且3a>2c>2b,試問:導(dǎo)函數(shù)f(x)在區(qū)間(0,2)內(nèi)是否有零點(diǎn),并說明理由.

解:(1)因為 ,又

因為x1,x3是方程 的兩根,則 ,.即b=-3a,c=-4a.
所以
∴f'(x)=a(x2-3x-4),由x2-3x-4<0,得-1<x<4.
故f(x)的單調(diào)遞減區(qū)間是(-1,4),單調(diào)遞增區(qū)間是(-∞,-1),(4,+∞).
(2)因為f'(x)=ax2+bx+c,,所以 ,即3a+2b+2c=0.
因為3a>2c>2b,所以3a>0,2b<0,即a>0,b<0.
于是 ,f'(0)=c,f'(2)=4a+2b+c=4a-(3a+2c)+c=a-c.
①當(dāng)c>0時,因為 ,則f'(x)在區(qū)間(0,1)內(nèi)至少有一個零點(diǎn).
②當(dāng)c≤0時,因為 ,則f'(x)在區(qū)間(1,2)內(nèi)至少有一零點(diǎn).
故導(dǎo)函數(shù)f'(x)在區(qū)間(0,2)內(nèi)至少有一個零點(diǎn).
分析:(1)因為 ,因為x1,x3是方程 的兩根,使用根與系數(shù)的關(guān)系,得出b,c與a的關(guān)系式,從而得到f(x)的 解析式及f'(x)的解析式,由f'(x)<0求出減區(qū)間.
(2)求出 ,f'(0)=c,f'(2)=a-c,當(dāng)c>0時 f'(x)在區(qū)間(0,1)內(nèi)至少有一個零點(diǎn),當(dāng)c≤0時,f'(x)在區(qū)間(1,2)內(nèi)至少有一零點(diǎn).
點(diǎn)評:本題考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,函數(shù)的零點(diǎn)的判斷,二次函數(shù)的性質(zhì)與不等式性質(zhì)的應(yīng)用等基礎(chǔ)知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(a+1)x+lg|a+2|,g(x)=(a+1)x,(a∈R,a≠-2).
(1)若函數(shù)f(x)和g(x)在區(qū)間[lg|a+2|,(a+1)2]上都是減函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,比較f(1)與
16
的大小,寫出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(ax+b)圖象過點(diǎn)A(2,1)和B(5,2),設(shè)an=3f(n),n∈N*
(Ⅰ)求函數(shù)f(x)的解析式及數(shù)列{an}的通項公式;
(Ⅱ)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
對一切n∈N*均成立的最大實數(shù)a;
(Ⅲ)對每一個k∈N*,在ak與ak+1之間插入2k-1個2,得到新數(shù)列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,記為{bn},設(shè)Tn是數(shù)列{bn}的前n項和,試問是否存在正整數(shù)m,使Tm=2008?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果是函數(shù)的一個極值,稱點(diǎn)是函數(shù)的一個極值點(diǎn).已知函數(shù)

(1)若函數(shù)總存在有兩個極值點(diǎn),求所滿足的關(guān)系;

(2)若函數(shù)有兩個極值點(diǎn),且存在,求在不等式表示的區(qū)域內(nèi)時實數(shù)的范圍.

(3)若函數(shù)恰有一個極值點(diǎn),且存在,使在不等式表示的區(qū)域內(nèi),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三12月月考數(shù)學(xué)理卷 題型:解答題

(本小題滿分14分)已知函數(shù) 

(1)若函數(shù)在區(qū)間其中a >0,上存在極值,求實數(shù)a的取值范圍;

(2)如果當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍;

(3)求證.

 

查看答案和解析>>

同步練習(xí)冊答案