設(shè)p:實數(shù)x滿足,其中,

q:實數(shù)x滿足

(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;

(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍。

 

【答案】

(1);(2).

【解析】本試題主要考查了命題的真值,以及簡易邏輯中充分條件的判定。

解:(1)由

當(dāng)時,解得,即p為真時實數(shù)的取值范圍是………(1分)

,得,即q為真時實數(shù)的取值范圍是……(3分)

若p∧q為真,則p真且q真,……………(4分)

所以實數(shù)的取值范圍是……………(5分)

(2)p是q的必要不充分條件,即,且p不能推出q,

設(shè),則B是A的真子集!6分)

,當(dāng)時,;當(dāng)時,……………(7分)

所以當(dāng)時,有,解得,……………(9分)

當(dāng)時,顯然,不合題意。……………(11分)

所以實數(shù)的取值范圍是……………(12分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,點P(Sn,an)在直線(2-m)x+2my-m-2=0上,其中m為常數(shù),且m>0.
(Ⅰ)求證:{an}是等比數(shù)列,并求其通項an;
(Ⅱ)若數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿足b1=a1,bn=f(bn-1),(n∈N+,n≥2),求證:{
1bn
}
是等差數(shù)列,并求bn;
(Ⅲ)設(shè)數(shù)列{cn}滿足cn=bnbn+1,Tn為數(shù)列{cn}的前n項和,且存在實數(shù)T滿足Tn≥T,(n∈N+)求T的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在其定義域D上的導(dǎo)函數(shù)為f′(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈D都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).給出下列四個函數(shù):
①f(x)=
1
3
x3-x2+x+1;
②f(x)=lnx+
4
x+1
;
③f(x)=(x2-4x+5)ex;
④f(x)=
x2+x
2x+1
,
其中具有性質(zhì)P(2)的函數(shù)是
①②③
①②③
.(寫出所有滿足條件的函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={x,1},Q={y,1,2},P⊆Q,x,y∈{1,2,3,4,5,6,7,8,9},且在直角坐標(biāo)平面內(nèi),從所有滿足這些條件的有序?qū)崝?shù)對(x,y)表示的點中,任取一個,其落在圓x2+y2=r2內(nèi)(不含邊界)的概率恰為
27
,則r2的所有可能的正整數(shù)值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)在其定義域D上的導(dǎo)函數(shù)為f′(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈D都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).給出下列四個函數(shù):
①f(x)=
1
3
x3-x2+x+1;
②f(x)=lnx+
4
x+1
;
③f(x)=(x2-4x+5)ex
④f(x)=
x2+x
2x+1
,
其中具有性質(zhì)P(2)的函數(shù)是______.(寫出所有滿足條件的函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)在其定義域D上的導(dǎo)函數(shù)為f′(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈D都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).給出下列四個函數(shù):
①f(x)=x3-x2+x+1;
②f(x)=lnx+;
③f(x)=(x2-4x+5)ex;
④f(x)=,
其中具有性質(zhì)P(2)的函數(shù)是    .(寫出所有滿足條件的函數(shù)的序號)

查看答案和解析>>

同步練習(xí)冊答案