在平面直角坐標(biāo)系中,已知三點(diǎn),直線AC的斜率與傾斜角為鈍角的直線AB的斜率之和為,而直線AB恰好經(jīng)過拋物線)的焦點(diǎn)F并且與拋物線交于P、Q兩點(diǎn)(P在Y軸左側(cè)).則(    )
A.9B.C.D.
A

試題分析:由題意得,且.令,,則,所以,且,由此可解得.由拋物線的方程知焦點(diǎn)為,因此設(shè)直線的方程為,代入拋物線方程,得,解得,所以由題意知,.由圖形特征根據(jù)三角形相似易知
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等邊三角形的一個(gè)頂點(diǎn)在坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線上,則該三角形的面積是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知拋物線的方程為,過點(diǎn)作直線與拋物線相交于兩點(diǎn),點(diǎn)的坐標(biāo)為,連接,設(shè)軸分別相交于兩點(diǎn).如果的斜率與的斜率的乘積為,則的大小等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線k>0)與拋物線相交于、兩點(diǎn),的焦點(diǎn),若,則k的值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準(zhǔn)線方程是  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動(dòng)點(diǎn),且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.

(1)求點(diǎn)P的軌跡C的方程;
(2)若Q是軌跡C上異于點(diǎn)P的一個(gè)點(diǎn),且=λ,直線OP與QA交于點(diǎn)M,問:是否存在點(diǎn)P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)F(0,1)和直線l1:y=-1,過定點(diǎn)F與直線l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)過點(diǎn)F的直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求·的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,若的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且拋物線的準(zhǔn)線交雙曲線所得的弦長為4,則雙曲線的實(shí)軸長為(   )
A.6B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y2=2px(p>0),過其焦點(diǎn)且斜率為1的直線交拋物線于A、B兩點(diǎn),若線段AB的中點(diǎn)的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為(  )
(A)x=1   (B)x=-1
(C)x=2   (D)x=-2

查看答案和解析>>

同步練習(xí)冊(cè)答案