如圖,ABCD是一塊邊長(zhǎng)為100m的正方形地皮,其中ATPS是一半徑為90m的扇形小山,P上一點(diǎn),其余都是平地,現(xiàn)一開發(fā)商想在平地上建造一個(gè)有邊落在BCCD上的長(zhǎng)方形停車場(chǎng)PQCR,求長(zhǎng)方形停車場(chǎng)的最大面積和最小面積。

答案:
解析:

[解]如圖,設(shè)ÐPAB=q ,延長(zhǎng)RPABM,則

AM=90cosq ,MP=90sinq

PQ=MB=AB-AM=100-90cosq ,

PR=MR-MP=100-90sinq

所以S矩形PQCR=PQ×PR=(100-90cosq )(100-90sinq )=10000-9000(sinq +cosq )+8100sinq cosq 。

設(shè),

。

所以,故當(dāng)時(shí),S矩形PQCR有最小值950m2

當(dāng)時(shí),S矩形PQCR有最大值

[評(píng)注]解有關(guān)最大值或最小值問題,一種方法是運(yùn)用函數(shù)思想,即求出有關(guān)函數(shù)表達(dá)式,然后求該表達(dá)式的最大值或最小值;另一種方法是運(yùn)用不等式性質(zhì)。


提示:

選取ÐPAB為自變量,列出停車場(chǎng)的面積函數(shù)式,求最值。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是一塊邊長(zhǎng)為100m的正方形地皮,其中AST是半徑為90m的扇形小山,其余部分都是平地,一開發(fā)商想在平地上建一個(gè)矩形的停車場(chǎng),使矩形的一個(gè)頂點(diǎn)P在圓弧ST上,相鄰兩邊CQ,CR落在正方形的BC,CD邊上,求矩形停車場(chǎng)PQCR面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨著機(jī)動(dòng)車數(shù)量的增加,對(duì)停車場(chǎng)所的需求越來越大,如圖,ABCD是一塊邊長(zhǎng)為100米的正方形地皮,其中ATPS是一座半徑為90米的扇形小山,P是弧TS上一點(diǎn),其余部分都是平地,現(xiàn)一開發(fā)商想在平地上建一個(gè)邊落在BC和CD上的長(zhǎng)方形停車場(chǎng)PQCR.
(1)設(shè)∠PAB=θ,試寫出停車場(chǎng)PQCR的面積S與θ的函數(shù)關(guān)系式;
(2)求長(zhǎng)方形停車場(chǎng)PQCR面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是一塊邊長(zhǎng)為100米的正方形地皮,其中ATPS是一半徑為80米的扇形小山,P是弧TS上一點(diǎn),其余部分都是平地.現(xiàn)一開發(fā)商想在平地上建造一個(gè)有邊落在BC與CD上的長(zhǎng)方形停車場(chǎng)PQCR.設(shè)∠PAT為θ,長(zhǎng)方形停車場(chǎng)面積為S.
(1)試寫出S關(guān)于θ的函數(shù);
(2)求長(zhǎng)方形停車場(chǎng)面積S的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃埔區(qū)一模)如圖,ABCD是一塊邊長(zhǎng)為100米的正方形地皮,其中ATPS是一半徑為90米的底面為扇形小山(P為
TS
上的點(diǎn)),其余部分為平地.今有開發(fā)商想在平地上建一個(gè)邊落在BC及CD上的長(zhǎng)方形停車場(chǎng)PQCR.求長(zhǎng)方形停車場(chǎng)PQCR面積的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是一塊矩形鐵板AB=48cm,BC=30cm,剪掉四個(gè)陰影部分的小正方形,沿虛線折疊后,焊接成一個(gè)無蓋的長(zhǎng)方體水箱.
(Ⅰ)寫出水箱的容積V與水箱高度x的函數(shù)表達(dá)式,并求其定義域;
(Ⅱ)當(dāng)水箱高度x為何值時(shí),水箱的容積V最大,并求出其最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案