已知a>1,ab=2a+b,則(a+1)(b+2)的最小值是
 
考點(diǎn):基本不等式
專(zhuān)題:不等式的解法及應(yīng)用
分析:由a>1,ab=2a+b,可得b≠2,a=
b
b-2
>1
,b>2.代入(a+1)(b+2)=
b2
b-2
+
2b
b-2
+b+2
,變形利用基本不等式即可得出.
解答: 解:∵a>1,ab=2a+b,
∴b≠2,
a=
b
b-2
>1
,解得b>2.
∴(a+1)(b+2)=ab+2a+b+2
=
b2
b-2
+
2b
b-2
+b+2

=
b2-4+4
b-2
+
2(b-2)+4
b-2
+b+2

=2(b-2)+
8
b-2
+10
≥2
2(b-2)•
8
b-2
+10
=18,當(dāng)且僅當(dāng)b=4時(shí)取等號(hào).
因此(a+1)(b+2)的最小值是18.
故答案為:18.
點(diǎn)評(píng):本題考查了變形利用基本不等式的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB⊥AC,AC=AB=AA1,E、F分別是棱BC,A1A的中點(diǎn),G為棱CC1上的一點(diǎn),且C1F∥平面AEG.
(Ⅰ)求
CG
CC1
的值;
(Ⅱ)求證:EG⊥A1C;
(Ⅲ)求二面角A1-AG-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于集合A,如果定義了一種運(yùn)算“⊕”,使得集合A中的元素間滿足下列4個(gè)條件:
(。?a,b∈A,都有a⊕b∈A;
(ⅱ)?e∈A,使得對(duì)?a∈A,都有e⊕a=a⊕e=a;
(ⅲ)?a∈A,?a′∈A,使得a⊕a′=a′⊕a=e;
(ⅳ)?a,b,c∈A,都有(a⊕b)⊕c=a⊕(b⊕c),
則稱(chēng)集合A對(duì)于運(yùn)算“⊕”構(gòu)成“對(duì)稱(chēng)集”.
下面給出三個(gè)集合及相應(yīng)的運(yùn)算“⊕”:
①A={整數(shù)},運(yùn)算“⊕”為普通加法;
②A={復(fù)數(shù)},運(yùn)算“⊕”為普通減法;
③A={正實(shí)數(shù)},運(yùn)算“⊕”為普通乘法.
其中可以構(gòu)成“對(duì)稱(chēng)集”的有
 
.(把所有正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x-2)=
1+2x2,x>2
2x,x≤2
,則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件
x-y≤1
x+y≥1
y≤
3
2
,若x,y取整數(shù),則目標(biāo)函數(shù)z=2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足:f(x)-4f(
1
x
)=x,則|f(x)|的最小值為( 。
A、
2
15
B、
4
15
C、
2
15
15
D、
4
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,如果?x∈D,?y∈D,使得f(x)=-f(y)成立,則稱(chēng)函數(shù)f(x)為“Ω函數(shù)”.給出下列四個(gè)函數(shù):
①y=sinx;
②y=2x;
③y=
1
x-1
;
④f(x)=lnx,
則其中“Ω函數(shù)”共有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一幾何體的三視圖如圖,該幾何體的頂點(diǎn)都在球O的球面上,球O的表面積是( 。
A、2πB、4πC、8πD、16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從1,2,3,4,5,6這六個(gè)數(shù)中,每次取出兩個(gè)不同的數(shù)記為a,b,則共可得到2 
b
a
的不同值的個(gè)數(shù)是(  )
A、20B、22C、24D、28

查看答案和解析>>

同步練習(xí)冊(cè)答案