給定拋物線C:y2=4x,F(xiàn)是其焦點(diǎn),過F的直線l:y=k(x-1),它與C相交于A、B兩點(diǎn).如果
FB
AF
λ∈[
1
16
,
1
4
]
.那么k的變化范圍是( 。
A、[
8
15
,
4
3
]
B、[-
4
3
,-
8
15
]
C、[
8
15
,
4
3
]∪[-
4
3
,-
8
15
]
D、(-∞,-
4
3
]∪[
8
15
,+∞)
分析:根據(jù)
FB
AF
得關(guān)于x2和y2的方程組,進(jìn)而求得x2=λ.得到B的坐標(biāo),根據(jù)焦點(diǎn)坐標(biāo)可得直線的方程,進(jìn)而求得直線在y軸上的截距,根據(jù)
2
λ
λ-1
=
2
λ
+1
+
2
λ-1
,判斷
2
λ
λ-1
λ∈[
1
16
1
4
]
上是遞減的,進(jìn)而得到答案.
解答:解:由題設(shè)知
FB
AF
得:(x2-1,y2)=λ(1-x1,-y1),即
x2-1=λ(1-x1)(1)
y2=-λy1(2)
(2)
由(2)得y222y12
∵y12=4x1,y22=4x2,∴x22x1(3)
聯(lián)立(1)(3)解得x2=λ.依題意有λ>0.
∴B(λ,2
λ
)或B(λ,-2
λ
),又F(1,0),
得直線l的方程為(λ-1)y=2
λ
(x-1)或(λ-1)y=-2
λ
(x-1)
當(dāng)λ∈[
1
16
,
1
4
]
時(shí),l在y軸上的截距為
2
λ
λ-1
或-
2
λ
λ-1

2
λ
λ-1
=
2
λ
+1
+
2
λ-1
,可知
2
λ
λ-1
[
1
16
,
1
4
]
上是遞減的,
8
15
2
λ
λ-1
4
3
,-
4
3
≤-
2
λ
λ-1
≤-
8
15

直線l在y軸上截距的變化范圍是[
8
15
,
4
3
]∪[-
4
3
,-
8
15
]
故選C.
點(diǎn)評:本題主要考查了拋物線的應(yīng)用和拋物線與直線的關(guān)系.考查了學(xué)生對圓錐曲線知識的綜合掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定拋物線C:y2=4x,F(xiàn)是C的焦點(diǎn),過點(diǎn)F的直線l與C相交于A、B兩點(diǎn),記O為坐標(biāo)原點(diǎn).
(1)求
OA
OB
的值;
(2)設(shè)
AF
FB
,當(dāng)三角形OAB的面積S∈[2,
5
]時(shí),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定拋物線C:y2=4x,F(xiàn)是C的焦點(diǎn),過點(diǎn)F的直線l與C相交于A、B兩點(diǎn).
(Ⅰ)設(shè)l的斜率為1,求
OA
OB
夾角的大;
(Ⅱ)設(shè)
FB
=λ
AF
,若λ∈[4,9],求l在y軸上截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定拋物線C:y2=4x,F(xiàn)是C的焦點(diǎn),過點(diǎn)F的直線l與C相交于A、B兩點(diǎn).設(shè)l的斜率為1,則
.
OA
.
OB
夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定拋物線c:y2=4x,F(xiàn)是c的焦點(diǎn),過點(diǎn)F的直線l與c相交于A,B兩點(diǎn).
(1)設(shè)l的斜率為1,求
OA
OB
夾角的余弦值;
(2)設(shè)
FB
=λ
AF
,若λ∈[4,9],求l在y軸上的截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案