已知中心在原點的橢圓C的一個焦點F(4,0),長軸端點到較近焦點的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點.
(1)求橢圓的方程;
(2)若x1+x2=8,在x軸上是否存在一點D,使|數(shù)學(xué)公式|=|數(shù)學(xué)公式|若存在,求出D點的坐標(biāo);若不存在,說明理由.

解:(1)由題設(shè)知c=4,a-c=1,∴a=5,b=3.
∴所求方程為+=1.
(2)假設(shè)存在點D(x0,0),由||=||,
則點D在線段AB的中垂線上,
又線段AB的中點為
∴線段AB的中垂線方程為:
y-=-(x-4).①
+=1,+=1,
=0.
=-
在①中令y=0,∴-=(x0-4).
∴x0=,∴存在點D為
分析:(1)由中心在原點的橢圓C的一個焦點F(4,0),我們及確定c的值,再結(jié)合長軸端點到較近焦點的距離為1,我們可以求出a的值,進(jìn)而求出b值后,即可得到橢圓的方程;
(2)若存在一點D,使||=||,根據(jù)垂直平分線的性質(zhì),則D一定在線段AB的垂直平分線上,根據(jù)已知我們設(shè)出AB中點坐標(biāo),再根據(jù)直線垂直的充要條件,構(gòu)造方程,解方程即可得到D點的坐標(biāo).
點評:本題考查的知識點是橢圓的簡單性質(zhì)及直線與圓錐曲線的綜合問題,其中根據(jù)已知條件求出橢圓的標(biāo)準(zhǔn)方程是解答此類問題的基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的橢圓的一個焦點為(0,
2
),且過點A(1,
2
)
,過A作傾斜角互補(bǔ)的兩條直線,它們與橢圓的另一個交點分別為點B和點C.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:直線BC的斜率為定值,并求這個定值.
(3)求三角形ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的橢圓C的一個焦點F(4,0),長軸端點到較近焦點的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點.
(1)求橢圓的方程;
(2)若x1+x2=8,在x軸上是否存在一點D,使|
DA
|=|
DB
|若存在,求出D點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)已知中心在原點的橢圓C的右焦點為F(1,0),離心率等于
1
2
,則C的方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的橢圓C:
x2
a2
+
y2
b2
=1的焦點為F1(0,3),M(x,4)(x>0)橢圓C上一點,△MOF1的面積為
3
2

(1)求橢圓C的方程.
(2)是否存在平行于OM的直線l,使得直線l與橢圓C相較于A,B兩點,且以線段AB為直徑的圓恰好經(jīng)過原點?若存在,求出直線l的方程,請說明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的橢圓C的右焦點為F(
15
,0),直線y=x與橢圓的一個交點的橫坐標(biāo)為2,則橢圓方程為( 。
A、
x2
16
+y2=1
B、x2+
y2
16
=1
C、
x2
20
+
y2
5
=1
D、
x2
5
+
y2
20
=1

查看答案和解析>>

同步練習(xí)冊答案