設(shè)[x]表示不超過x的最大整數(shù),如[2]=2,[
5
4
]=1,對于給定的n∈N*,定義Cnx=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則C
3
28
=
 
;當(dāng)x∈[2,3)時,函數(shù)Cx8的值域是
 
分析:對于題目中新定義的:“Cnx=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
”理解是解決此題的問題,如求
C
3
2
8
,它是由一個分式的分子和分母兩部分構(gòu)成,分子是8,分母是
3
2
的分?jǐn)?shù).按此理解將函數(shù)Cx8的值域問題轉(zhuǎn)化成一個函數(shù)的值域求解.
解答:解:當(dāng)x=
3
2
時,[
3
2
]=1,
C
3
2
8
=
8
3
2
=
16
3

當(dāng)x∈[2,3)時,[x]=2,Cxn=
n(n-1)
x(x-1)
,
Cx8=
8×7
x(x-1)
=
56
x(x-1)

又∵當(dāng)x∈[2,3)時,f(x)=x(x-1)∈[2,6),
56
x(x-1)
∈(
28
3
,28),∴Cx8∈(
28
3
,28].
故答案為:
16
3
,(
28
3
,28].
點評:本題是一道創(chuàng)新題,新的高考,每年均會出現(xiàn)一定新穎的題目,我們只要認(rèn)真審題,細(xì)心研究,活用基礎(chǔ)知識,把握數(shù)學(xué)思想、數(shù)學(xué)方法,構(gòu)建知識結(jié)構(gòu)和認(rèn)知結(jié)構(gòu),實現(xiàn)知識到能力的轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù)(如[2]=2,[
5
4
]=1),對于給定的n∈N*,定義
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當(dāng)x∈[
3
2
,3)
時,函數(shù)
C
x
8
的值域是( 。
A、[
16
3
,28]
B、[
16
3
,56)
C、(4,
28
3
)∪
[28,56)
D、(4,
16
3
]∪(
28
3
,28]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù)(如:[1]=1,[
5
2
]=2
),則定義在[2,4)的函數(shù)f(x)=x[x]-ax(其中a為常數(shù),且a≤4)的值域為( 。
A、[4-2a,64-4a)
B、[4-2a,9-3a)∪[27-3a,64-4a)
C、[9-3a,64-4a)
D、[4-2a,9-3a]∪(27-3a,64-4a]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•臺州二模)設(shè)[x]表示不超過x的最大整數(shù)(如[2]=2,[1.3]=1),已知函數(shù)f(x)=
[x+
1
2
]
[x]+
1
2
(x≥0),當(dāng)f(x)<1時,實數(shù)x的取值范圍是
{x|k≤x<k+
1
2
,k∈N}
{x|k≤x<k+
1
2
,k∈N}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南 題型:單選題

設(shè)[x]表示不超過x的最大整數(shù)(如[2]=2,[
5
4
]=1),對于給定的n∈N*,定義
Cxn
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當(dāng)x∈[
3
2
,3)
時,函數(shù)C8x的值域是( 。
A.[
16
3
,28]
B.[
16
3
,56)
C.(4,
28
3
)∪
[28,56)
D.(4,
16
3
]∪(
28
3
,28]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省高考真題 題型:填空題

設(shè)[x]表示不超過x的最大整數(shù),(如[2]=2,=1),對于給定的n∈N+,定義,x∈[1,+∞),則(    ),當(dāng)x∈[2,3)時,函數(shù)的值域是(    )。

查看答案和解析>>

同步練習(xí)冊答案