【題目】已知橢圓過點,且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于、兩點,以為對角線作正方形,記直線軸的交點為,問、兩點間距離是否為定值?如果是,求出定值;如果不是,請說明理由.

【答案】(Ⅰ);(Ⅱ)

【解析】試題分析:

(1)利用題意確定 的值即可求得橢圓的標(biāo)準(zhǔn)方程;

(2)利用題意聯(lián)立直線與橢圓的方程,利用弦長公式求得 的值,最后利用勾股定理進行計算,證得 為定值即可.

試題解析:

(Ⅰ)設(shè)橢圓的半焦距為

因為點在橢圓上,所以.故

又因為,所以

所以橢圓的標(biāo)準(zhǔn)方程為:

(Ⅱ)設(shè) ,線段中點為

聯(lián)立,得:

,可得

所以,

所以中點為

弦長 ,

又直線軸的交點,

所以

所以

所以、兩點間距離為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,且上有三個零點,1是其中一個零點.

(1)求的取值范圍;

(2)若直線在曲線的上方部分所對應(yīng)的的集合為,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形, 平面 ,點的中點.

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.

如圖,在陽馬中,側(cè)棱底面,且, 中點,點上,且平面,連接

(Ⅰ)證明: 平面

(Ⅱ)試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;

(Ⅲ)已知 ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知2件次品和3件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)果.

1求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2已知每檢測一件產(chǎn)品需要費用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

1)求函數(shù)上的單調(diào)區(qū)間,并給以證明;

2)設(shè)關(guān)于的方程的兩根為,試問是否存在實數(shù),使得不等式對任意的恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)

(1)函數(shù)過定點,求的值;

(2)當(dāng)時,求函數(shù)的最小值

(3)是否存在實數(shù),使得(2)中關(guān)于的函數(shù)的定義域為時,值域為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在實數(shù)使得不等式成立,求實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點處有相同的切線.

(Ⅰ)若函數(shù)的圖象有兩個交點,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點 ,且,證明:

查看答案和解析>>

同步練習(xí)冊答案