已知橢圓的兩個焦點分別是,離心率
(1)求橢圓的方程;
(2)一條不與坐標(biāo)軸平行的直線l與橢圓交于不同的兩點M,N,且線段MN中點的橫坐標(biāo)為,求直線l的傾斜角的范圍.
解:(1)依題意可知
求得a=3,b=1
∴橢圓的方程為:=1
(2)直線l不與坐標(biāo)軸平行,
設(shè)為y=kx+b(k≠0),M(),N(x2,y2
聯(lián)立方程:
則(9+k2)x2+2kbx+b2﹣9=0
△=(2kb)2﹣4(9+k2)(b2﹣9)>0,k2﹣b2+9>0
+x2=﹣,x2=
MN的中點的橫坐標(biāo)=+x2)=﹣
所以+x2=﹣1
所以9+k2=2kb>b2
(k﹣b)2=b2﹣9≥0,b2≥9
b≥3或b≤﹣3
b(b﹣2k)<0
所以b≥3>0時,b﹣2k<0,k>
b≤﹣3<0時,b﹣2k>0,k<≤﹣
所以k的取值范圍為(﹣∞,﹣)∪(,+∞)
直線l的傾斜角的取值范圍為:(arctan,)∪(,﹣arctan
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩個焦點分別是F1(0,-2
2
),F2(0,2
2
)
,離心率e=
2
2
3

(1)求橢圓的方程;
(2)一條不與坐標(biāo)軸平行的直線l與橢圓交于不同的兩點M,N,且線段MN中點的橫坐標(biāo)為-
1
2
,求直線l的傾斜角的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列各曲線的標(biāo)準方程.
(1)已知橢圓的兩個焦點分別是(-2,0),(2,0),并且經(jīng)過點(
5
2
,-
3
2
).
(2)已知拋物線焦點在x軸上,焦點到準線的距離為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省高考模擬預(yù)測卷(四)文科數(shù)學(xué)試卷(解析版) 題型:解答題

給定橢圓  ,稱圓心在坐標(biāo)原點,半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個焦點分別是,橢圓上一動點滿足

(Ⅰ)求橢圓及其“伴隨圓”的方程;

(Ⅱ)過點P作直線,使得直線與橢圓只有一個交點,且截橢圓的“伴隨圓”所得的弦長為.求出的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題

((本小題滿分14分)

給定橢圓  ,稱圓心在坐標(biāo)原點,半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個焦點分別是,橢圓上一動點滿足

(Ⅰ)求橢圓及其“伴隨圓”的方程

(Ⅱ)試探究y軸上是否存在點(0, ),使得過點作直線與橢圓只有一個交點,且截橢圓的“伴隨圓”所得的弦長為.若存在,請求出的值;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)文卷 題型:解答題

(本小題滿分14分)

給定橢圓  ,稱圓心在坐標(biāo)原點,半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個焦點分別是,橢圓上一動點滿足

(Ⅰ) 求橢圓及其“伴隨圓”的方程;

(Ⅱ) 過點P作直線,使得直線與橢圓只有一個交點,且截橢圓的“伴隨圓”所得的弦長為.求出的值.

 

查看答案和解析>>

同步練習(xí)冊答案