【題目】下列命題:

①對立事件一定是互斥事件;②若A,B為兩個隨機(jī)事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.

其中正確命題的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

根據(jù)互斥之間和對立事件的概念,及互斥事件和對立事件的關(guān)系和概率的計算,即可作出判斷,得到答案.

由題意①中,根據(jù)對立事件與互斥事件的關(guān)系,可得是正確;②中,當(dāng)A與B是互斥事件時,才有P(A∪B)=P(A)+P(B),對于任意兩個事件A,B滿足P(A∪B)=P(A)+P(B)-P(AB),所以是不正確的;③也不正確.P(A)+P(B)+P(C)不一定等于1,還可能小于1;④也不正確.例如:袋中有大小相同的紅、黃、黑、綠4個球,從袋中任摸一個球,設(shè)事件A={摸到紅球或黃球},事件B={摸到黃球或黑球},顯然事件A與B不互斥,但P(A)+P(B)==1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是(

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期是,且當(dāng)時,取得最大值3.

(1)求的解析式及單調(diào)增區(qū)間;

(2)若,且,求;

(3)將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,且是偶函數(shù),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如下圖,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE。

填空:∠AEB的度數(shù)為____________;

線段AD、BE之間的數(shù)量關(guān)系是_________。

(2)拓展探究

如下圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=900, 點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE。請判斷∠AEB的度數(shù)及線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由。

(3)解決問題

如下圖,在正方形ABCD中,CD=。若點(diǎn)P滿足PD=1,且∠BPD=900,請直接寫出點(diǎn)A到BP的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足0<an<1,且an+1+ =2an+ (n∈N*).
(1)證明:an+1<an
(2)若a1= ,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 證明: <Sn ﹣2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中, , , 分別為, 的中點(diǎn).將沿折起到的位置,使,如圖2,連結(jié)

(Ⅰ)求證:平面 平面;

(Ⅱ)若中點(diǎn),求直線與平面所成角的正弦值;

(Ⅲ)線段上是否存在一點(diǎn),使二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為菱形, , 底面, 為直線上一動點(diǎn).

Ⅰ)求證:

Ⅱ)若, 分別為線段, 的中點(diǎn),求證: 平面

Ⅲ)直線上是否存在點(diǎn),使得平面平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,則異面直線EF與BC所成角大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 、均為等邊三角形, .

(Ⅰ)求證: 平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案