【題目】已知函數(shù)f(x)=lnxax(a∈R).求函數(shù)f(x)的單調(diào)區(qū)間.

【答案】當(dāng)a≤0時(shí),函數(shù)f(x)的遞增區(qū)間為(0,+∞);

當(dāng)a>0時(shí),函數(shù)f(x)的遞增區(qū)間為,遞減區(qū)間為.

【解析】分析:求函數(shù)的定義域,利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求出函數(shù)的單調(diào)區(qū)間.

詳解:f′(x)=a (x>0),

①當(dāng)a≤0時(shí),f′(x)=a>0,即函數(shù)f(x)的遞增區(qū)間為(0,+∞).

②當(dāng)a>0時(shí),令f′(x)=a=0,可得x,

當(dāng)0<x<時(shí),f′(x)=>0;

當(dāng)x>時(shí),f′(x)=<0,

故函數(shù)f(x)的遞增區(qū)間為,遞減區(qū)間為

綜上可知,當(dāng)a≤0時(shí),函數(shù)f(x)的遞增區(qū)間為(0,+∞);

當(dāng)a>0時(shí),函數(shù)f(x)的遞增區(qū)間為,遞減區(qū)間為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分15分)已知數(shù)列{an}的前n項(xiàng)和為Sn,且anSn2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)Pbn,bn+1)在直線(xiàn)x-y+2=0上。

1)求a1a2的值;

2)求數(shù)列{an},{bn}的通項(xiàng)anbn;

3)設(shè)cn=an·bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱(chēng)圖形”的充要條件為“函數(shù)y=f(x+a)﹣b 是奇函數(shù)”.
(1)將函數(shù)g(x)=x3﹣3x2的圖象向左平移1個(gè)單位,再向上平移2個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)g(x)圖象對(duì)稱(chēng)中心的坐標(biāo);
(2)求函數(shù)h(x)= 圖象對(duì)稱(chēng)中心的坐標(biāo);
(3)已知命題:“函數(shù) y=f(x)的圖象關(guān)于某直線(xiàn)成軸對(duì)稱(chēng)圖象”的充要條件為“存在實(shí)數(shù)a和b,使得函數(shù)y=f(x+a)﹣b 是偶函數(shù)”.判斷該命題的真假.如果是真命題,請(qǐng)給予證明;如果是假命題,請(qǐng)說(shuō)明理由,并類(lèi)比題設(shè)的真命題對(duì)它進(jìn)行修改,使之成為真命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)說(shuō)偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個(gè)如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點(diǎn)為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.

(1)試計(jì)算出圖案中球與圓柱的體積比;

(2)假設(shè)球半徑.試計(jì)算出圖案中圓錐的體積和表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex , x∈R.
(1)若直線(xiàn)y=kx+1與f (x)的反函數(shù)g(x)=lnx的圖象相切,求實(shí)數(shù)k的值;
(2)設(shè)x>0,討論曲線(xiàn)y=f (x) 與曲線(xiàn)y=mx2(m>0)公共點(diǎn)的個(gè)數(shù).
(3)設(shè)a<b,比較 的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為招聘新員工設(shè)計(jì)了一個(gè)面試方案:應(yīng)聘者從道備選題中一次性隨機(jī)抽取道題,按照題目要求獨(dú)立完成規(guī)定:至少正確完成其中道題的便可通過(guò).已知道備選題中應(yīng)聘者甲有道題能正確完成,道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響

1)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計(jì)算其數(shù)學(xué)期望;

2)請(qǐng)分析比較甲、乙兩人誰(shuí)的面試通過(guò)的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計(jì)”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的60名學(xué)生,得到數(shù)據(jù)如下表:

喜歡統(tǒng)計(jì)課程

不喜歡統(tǒng)計(jì)課程

合計(jì)

男生

20

10

30

女生

10

20

30

合計(jì)

30

30

60

(1)判斷是否有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別有關(guān)?

(2)用分層抽樣的方法從喜歡統(tǒng)計(jì)課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個(gè)樣本,從中任選3人,求恰有2個(gè)男生和1個(gè)女生的概率.

下面的臨界值表供參考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)

1)若直線(xiàn)不經(jīng)過(guò)第四象限,求的取值范圍;

2)若直線(xiàn)軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為拋物線(xiàn)的焦點(diǎn),為其標(biāo)準(zhǔn)線(xiàn)與軸的交點(diǎn),過(guò)的直線(xiàn)交拋物線(xiàn),兩點(diǎn),為線(xiàn)段的中點(diǎn),且,則__________

查看答案和解析>>

同步練習(xí)冊(cè)答案