9.已知m,n為兩條不同的直線,α,β為兩個(gè)不同的平面,則下列命題中正確的有( 。
(1)m?α,n?α,m∥β,n∥β⇒α∥β  (2)n∥m,n⊥α⇒m⊥α
(3)α∥β,m?α,n?β⇒m∥n         (4)m⊥α,m⊥n⇒n∥α
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

分析 由空間中的線面關(guān)系逐一核對(duì)四個(gè)命題得答案.

解答 解:對(duì)于(1),m?α,n?α,m∥β,n∥β⇒α∥β,錯(cuò)誤,當(dāng)m∥n時(shí),α與β可能相交;
對(duì)于(2),n∥m,n⊥α⇒m⊥α,正確,原因是:n⊥α,則n垂直α內(nèi)的兩條相交直線,又m∥n,則m也垂直α內(nèi)的這兩條相交直線,則m⊥α;
對(duì)于(3),α∥β,m?α,n?β⇒m∥n,錯(cuò)誤,m與n可能異面;
對(duì)于(4),m⊥α,m⊥n⇒n∥α,錯(cuò)誤,也可能是n?α.
∴正確命題的個(gè)數(shù)是1個(gè).
故選:B.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.冪函數(shù)f(x)=kxα(k,α∈R)的圖象經(jīng)過點(diǎn)$({\frac{1}{3}\;,\;\;9})$,則k+α=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a1+2a4=a6,S3=3,則a9=15,S10=80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=$\frac{1}{2-x}$+$\sqrt{9-{x}^{2}}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x≠2}B.{x|x<-3或x>3}C.{x|-3≤x≤3}D.{x|-3≤x≤3且≠2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x>0,y>0且x+y=4,若不等式$\frac{1}{x}$+$\frac{4}{y}$≥m恒成立,則m的取值范圍是(  )
A.{m|m>$\frac{9}{4}$}B.{m|m≥$\frac{9}{4}$}C.{m|m<$\frac{9}{4}$}D.{m|m≤$\frac{9}{4}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={1,2,3},N={1,3,4},則M∩N=( 。
A.{1,3}B.{1,2,3,4}C.{2,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一條漸近線方程為y=-2x,則a的值為(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)  y=sin$\frac{x}{2}$,x∈R的最小正周期是( 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)g(x)=a-x2($\frac{1}{e}$≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是[1,e2-2].

查看答案和解析>>

同步練習(xí)冊(cè)答案