【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 =2csinA
(1)確定角C的大。
(2)若c= ,且△ABC的面積為 ,求a+b的值.

【答案】
(1)解:∵ =2csinA

∴正弦定理得 ,

∵A銳角,

∴sinA>0,

,

又∵C銳角,


(2)解:三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC

即7=a2+b2﹣ab,

又由△ABC的面積得

即ab=6,

∴(a+b)2=a2+b2+2ab=25

由于a+b為正,所以a+b=5


【解析】(1)利用正弦定理把已知條件轉(zhuǎn)化成角的正弦,整理可求得sinC,進而求得C.(2)利用三角形面積求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=ex(exa)﹣a2x

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、是函數(shù) 的兩個極值點.

(1)若,求函數(shù)的解析式;

(2)若,求的最大值;

(3)設(shè)函數(shù),,當(dāng)時,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,過點作直線交圓兩點,分別過兩點作圓的切線,當(dāng)兩條切線相交于點時,則點的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一解三角形的題目因紙張破損,有一條件不清,具體如下:在△ABC中,已知a= ,2cos2 =( ﹣1)cosB,c= , 求角A,若該題的答案是A=60°,請將條件補充完整.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax在(﹣1,0)上是增函數(shù).
(1)求實數(shù)a的取值范圍A;
(2)當(dāng)a為A中最小值時,定義數(shù)列{an}滿足:a1∈(﹣1,0),且2an+1=f(an),用數(shù)學(xué)歸納法證明an∈(﹣1,0),并判斷an+1與an的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:f′(x)>1﹣f(x),f(0)=3,f′(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)>ex+2(其中e為自然對數(shù)的底數(shù))的解集為(
A.{x|x>0}
B.{x|x<0}
C.{x|x<﹣1或x>1}
D.{x|x<﹣1或0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若關(guān)于的不等式上恒成立,求的取值范圍;

(2)設(shè)函數(shù),若上有兩個不同極值點,求的取值范圍,并判斷極值的正負.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】富華中學(xué)的一個文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉ο螅畡⒗蠋煵铝巳湓挘骸阿購埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不會研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對了一句.據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是__________.(A莎士比亞、B雨果、C曹雪芹,按順序填寫字母即可.)

查看答案和解析>>

同步練習(xí)冊答案