精英家教網 > 高中數學 > 題目詳情
已知正三棱柱ABC-A1B1C1,底面邊長與側棱長的比為:1,則直線AB1與CA1所成的角為    °.
【答案】分析:本題的兩異面直線很難平移到一起求解,故將A1C放到一個平面A1DC,只需證明AB1垂直平面A1DC即可.
解答:解:如圖取AB的中點D,設側棱長為a,
因為AD=,A1A=1,A1B1=,
∴Rt△A1AD≌Rt△B1A1A,∠AB1A1=∠AA1D,
則A1D⊥AB1,又∵CD⊥AB,A1D∩CD=D
∴AB1⊥面A1DC,而A1C?面A1DC
∴AB⊥A1C,故答案為90°.
點評:本題主要考查了異面直線及其所成的角,以及利用線面垂直的判定定理進行解題等,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知正三棱柱ABC-A1B1C1的底面邊長為1,高為h(h>2),動點M在側棱BB1上移動.設AM與側面BB1C1C所成的角為θ.
(1)當θ∈[
π
6
,
π
4
]
時,求點M到平面ABC的距離的取值范圍;
(2)當θ=
π
6
時,求向量
AM
BC
夾角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正三棱柱ABC-A1B1C1的每條棱長均為a,M為棱A1C1上的動點.
(1)當M在何處時,BC1∥平面MB1A,并證明之;
(2)在(1)下,求平面MB1A與平面ABC所成的二面角的大;
(3)求B-AB1M體積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正三棱柱ABC-A1B1C1,底面邊長為8,對角線B1C=10,
(1)若D為AC的中點,求證:AB1∥平面C1BD;
(2)若CD=2AD,BP=λPB1,當λ為何值時,AP∥平面C1BD;
(3)在(1)的條件下,求直線AB1到平面C1BD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,已知正三棱柱ABC-A1B1C1中,D是BC的中點,AA1=AB=1.
(1)求證:平面AB1D⊥平面B1BCC1;
(2)求證:A1C∥平面AB1D;
(3)求二面角B-AB1-D的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•湖北模擬)如圖,已知正三棱柱ABC-A1B1C1各棱長都為a,P為棱A1B上的動點.
(Ⅰ)試確定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大;
(Ⅲ)在(Ⅱ)的條件下,求點C1到面PAC的距離.

查看答案和解析>>

同步練習冊答案