已知對任意實數(shù)x,有f(-x)=f(x),g(-x)=-g(x),且x>0時,f′(x)>0,g′(x)<0,則x<0時( )
A.f′(x)>0,g′(x)>0
B.f′(x)<0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)>0,g′(x)<0
【答案】分析:根據(jù)函數(shù)的單調(diào)性與其導函數(shù)的正負的關系,同時注意到奇(偶)函數(shù)在對稱的區(qū)間上單調(diào)性相同(反).
解答:解:∵x>0時,f′(x)>0,由函數(shù)的單調(diào)性與其導函數(shù)的負的關系,∴f(x)在(0,+∞0上是增函數(shù),又對任意實數(shù)x,有f(-x)=f(x),說明f(x)是偶函數(shù),f(x)的圖象關于y軸對稱,從而f(x)在(-∝,0)上是減函數(shù),∴x<0時,f′(x)<0.同樣地g(x)是奇函數(shù),其圖象關于原點對稱,在(0,+∞),(-∞,0)上都是減函數(shù),∴x<0時g′(x)<0
故選B.
點評:本題考查函數(shù)的單調(diào)性與其導函數(shù)的正負的關系,及奇偶函數(shù)圖象的特征.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

7、已知對任意實數(shù)x,有f(-x)=f(x),g(-x)=-g(x),且x>0時,f′(x)>0,g′(x)<0,則x<0時(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

15、已知對任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時.應該有f′(x)
0,g′(x)
0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對任意實數(shù)x,有f(x)+f(-x)=0,g(x)-g(-x)=0,且當x>0時,f′(x)<0,g′(x)<0,則當x<0時,有(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•寶坻區(qū)一模)已知對任意實數(shù)x,有f(-x)=f(x),g(-x)=-g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省福州市八縣(市)協(xié)作校高三上學期期中聯(lián)考理科數(shù)學卷 題型:選擇題

已知對任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,>0, >0,則x<0時(   )

A.>0,g′(x)>0         B.<0,)<0

C.>0,<0          D.<0,>0

 

查看答案和解析>>

同步練習冊答案