2.正四棱錐S-ABCD中,O為頂點在底面上的射影,P為側(cè)棱SB的中點,且SO=OD,則直線BC與AP所成的角的余弦值為( 。
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{3}}{3}$

分析 以O(shè)為原點建立空間直角坐標(biāo)系O-xyz,利用向量法能求出直線BC與AP所成的角的余弦值.

解答 如圖所示,以O(shè)為原點建立空間直角坐標(biāo)系O-xyz.
設(shè)OD=SO=OA=OB=OC=a,
則A(a,0,0),B(0,a,0),S(0,0,a),
C(-a,0,0),P(0,$\frac{a}{2}$,$\frac{a}{2}$).
則$\overrightarrow{BC}$=(-a,-a,0),$\overrightarrow{AP}$=(-a,$\frac{a}{2}$,$\frac{a}{2}$),
C=(a,a,0).
設(shè)直線BC與AP所成的角為θ,
則cosθ=$\frac{|\overrightarrow{BC}•\overrightarrow{AP}|}{|\overrightarrow{BC}|•|\overrightarrow{AP}|}$=$\frac{\frac{1}{2}{a}^{2}}{\sqrt{2}a•\sqrt{\frac{3}{2}}a}$=$\frac{\sqrt{3}}{6}$.
∴直線BC與AP所成的角的余弦值為$\frac{\sqrt{3}}{6}$.
故選:C.

點評 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=10cosθ-6$\sqrt{3}$sinθ,現(xiàn)以極點O為原點,極軸為x軸的非負半軸建立平面直角坐標(biāo)系,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=6+2\sqrt{3}t}\\{y=-\sqrt{3}-t}\end{array}\right.$(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程和曲線C2的普通方程;
(2)若曲線C1、C2交于A、B兩點,以AB為邊作等邊△ABD,求△ABD外接圓的圓心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}的前n項和為Sn,若a1=-1,an=3Sn(n>1),則S10=( 。
A.$-\frac{1}{512}$B.-$\frac{341}{512}$C.$\frac{1}{1024}$D.$\frac{1}{2048}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等差數(shù)列{an}的前n項和為Sn(n∈N*),且an=2n+λ,若數(shù)列{Sn}為遞增數(shù)列,則實數(shù)λ的取值范圍為(  )
A.(-4,+∞)B.[-4,+∞)C.(-3,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)命題p:$\frac{m-2}{m-3}$≤$\frac{2}{3}$;命題 q:關(guān)于x的不等式x2-4x+m2≤0的解集是空集,若“p∨q”為真命題,“p∧q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題中的假命題是( 。
A.存在x∈R,lgx=0B.存在x∈R,tanx=1C.任意的x∈R,x3>0D.任意的x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若P是雙曲線x2-y2=λ(λ>0)左支上的一點,F(xiàn)1、F2是左、右兩個焦點,若|PF2|=6,PF1與雙曲線的實軸垂直,則λ的值是( 。
A.3B.4C.1.5D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)在區(qū)間(0,+∞)上為減函數(shù)的是(  )
A.y=-|x-1|B.y=x2-2x+4C.y=ln(x+2)D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖所示,已知三棱柱ABC-A1B1C1的所有棱長都相等,AA1⊥平面ABC,D是A1C1的中點,則直線AD與平面B1DC所成的角θ的正弦值為$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案