已知雙曲線,P為C上的任意點(diǎn).

(1)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個常數(shù);

(2)設(shè)點(diǎn)A的坐標(biāo)為(3,0),求|PA|的最小值

答案:
解析:

  解:(1)設(shè)是雙曲線上任意一點(diǎn),

  該雙曲的兩條漸近線方程分別是

  點(diǎn)到兩條漸近線的距離分別是,

  它們的乘積是

  點(diǎn)到雙曲線的兩條漸線的距離的乘積是一個常數(shù)

  (2)設(shè)的坐標(biāo)為,則

  

  

  

  當(dāng)時,的最小值為,

  即的最小值為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京四中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線,P為C上的任意點(diǎn).
(1)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個常數(shù);
(2)設(shè)點(diǎn)A的坐標(biāo)為(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省深圳市高級中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線,P為C上的任意點(diǎn).
(1)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個常數(shù);
(2)設(shè)點(diǎn)A的坐標(biāo)為(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):8.7 雙曲線(2)(解析版) 題型:解答題

已知雙曲線,P為C上的任意點(diǎn).
(1)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個常數(shù);
(2)設(shè)點(diǎn)A的坐標(biāo)為(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線,P為C上的任意點(diǎn).
(1)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個常數(shù);
(2)設(shè)點(diǎn)A的坐標(biāo)為(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省高考數(shù)學(xué)一輪復(fù)習(xí):9.4 雙曲線的幾何性質(zhì)(解析版) 題型:解答題

已知雙曲線,P為C上的任意點(diǎn).
(1)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個常數(shù);
(2)設(shè)點(diǎn)A的坐標(biāo)為(3,0),求|PA|的最小值.

查看答案和解析>>

同步練習(xí)冊答案