在平面直角坐標系
中,橢圓
的中心為坐標原點,左焦點為
,
為橢圓
的上頂點,且
.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)已知直線
:
與橢圓
交于
,
兩點,直線
:
(
)與橢圓
交于
,
兩點,且
,如圖所示.
(。┳C明:
;
(ⅱ)求四邊形
的面積
的最大值.
(Ⅰ)解:設橢圓
的標準方程為
.
因為
,
,
所以
.
所以
. ………………………………………2分
所以 橢圓
的標準方程為
. ………………………………………3分
(Ⅱ)設
,
,
,
.
(ⅰ)證明:由
消去
得:
.
則
,
………………………………………5分
所以
.
同理
. ………………………………………7分
因為
,
所以
.
因為
,
所以
. ………………………………………9分
(ⅱ)解:由題意得四邊形
是平行四邊形,設兩平行線
間的距離為
,則
.
因為
,
所以
. ………………………………………10分
所以
.
(或
)
所以 當
時, 四邊形
的面積
取得最大值為
.
………………………………………13分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,橢圓
的離心率為
,直線
和
所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標準方程;
(Ⅱ) 設直線
與橢圓M有兩個不同的交點
與矩形ABCD有兩個不同的交點
.求
的最大值及取得最大值時m的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設橢圓C
1的離心率為
,焦點在x軸上且長軸長為26,若曲線C
2上的點到橢圓C
1的兩個焦點的距離的差的絕對值等于8,則曲線C
2的標準方程為
_____________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓的方程為
它的一個焦點與拋物線
的焦點重合,離心率
過橢圓的右焦點F作與坐標軸不垂直的直線
交橢圓于A、B兩點.(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點
求直線
的方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖所示,橢圓中心在坐標原點,
F為左焦點,當
⊥
時,其離心率為
,此類橢圓被稱為“黃金橢圓”.類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率
e等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
若橢圓
的左右焦點分別為
,線段
被拋物線
的焦點
內分成了
的兩段.
(1)求橢圓的離心率;
(2)過點
的直線
交橢圓于不同兩點
、
,且
,當
的面積最大時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的一個焦點是(0,2),那么
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的兩焦點之間的距離為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若點F
1,F(xiàn)
2為橢圓
的焦點,P為橢圓上的點,當
的面積為1時,
的值是( )
查看答案和解析>>