如圖,為了測(cè)量河對(duì)岸A、B兩點(diǎn)之間的距離,在岸邊選定了1km長(zhǎng)的基線CD,并測(cè)得∠ACD=90°,∠BCD=60°,∠BDC=75°,∠ADC=30°.試計(jì)算A、B之間的距離.

【答案】分析:先根據(jù),∠ACD=90°,∠ADC=30°判斷出△ACD為直角三角形,進(jìn)而求得AC,進(jìn)而在△BCD中,由正弦定理可求得BC,最后在△ABC中,利用余弦定理即可求得AB.
解答:解:在△ACD中,已知CD=a,∠ACD=90°,∠ADC=30°,所以AC=.①
在△BCD中,由正弦定理可得BC==.②
在△ABC中,已經(jīng)求得AC和BC,又因?yàn)椤螦CB=30°,
所以利用余弦定理可以求得A、B兩點(diǎn)之間的距離為AB==
點(diǎn)評(píng):本題主要考查了解三角形的實(shí)際應(yīng)用.注意靈活利用正弦定理和余弦定理及其變形公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,為了測(cè)量河對(duì)岸A、B兩點(diǎn)之間的距離,在岸邊選定了1km長(zhǎng)的基線CD,并測(cè)得∠ACD=90°,∠BCD=60°,∠BDC=75°,∠ADC=30°.試計(jì)算A、B之間的距離.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,為了測(cè)量河對(duì)岸的塔高AB,可以選與塔底B在同一水平面內(nèi)的兩個(gè)測(cè)量點(diǎn)C與D.現(xiàn)測(cè)得∠BCD=53°,∠BDC=60°,CD=60(米),并在點(diǎn)C測(cè)得塔頂A的仰角為∠ACB=29°,求塔高AB(精確到0.1米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,為了測(cè)量河對(duì)岸A,B兩點(diǎn)間的距離,在河的這邊測(cè)得CD=
3
2
 km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,A、B兩點(diǎn)間的距離為
6
4
km
6
4
km

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,為了測(cè)量河對(duì)岸A,B兩點(diǎn)間的距離,某課外小組的同學(xué)在岸邊選取C,D兩點(diǎn),測(cè)得CD=200m,∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,則A,B兩點(diǎn)間的距離是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省唐山市高三第三次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,為了測(cè)量河對(duì)岸A、B兩點(diǎn)之間的距離,觀察者找到一個(gè)點(diǎn)C,從C點(diǎn)可以觀察到點(diǎn)A、B;找到一個(gè)點(diǎn)D,從D點(diǎn)可以觀察到點(diǎn)A、C:找到一個(gè)點(diǎn)E,從E點(diǎn)可以觀察到點(diǎn)B、C。并測(cè)得以下數(shù)據(jù):CD=CE=100m,∠ACD=90°,∠ACB=45°,∠BCE=75°,∠CDA=∠CEB=60°,求A、B兩 點(diǎn)之間的距離。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案